Information on Organism Bacillus megaterium

TaxTree of Organism Bacillus megaterium
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 1.13.11.79
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
degradation of sugar alcohols
-
-
glycerol degradation II
-
-
glycerol degradation V
-
-
Propanoate metabolism
-
-
D-sorbitol degradation I
-
-
Fructose and mannose metabolism
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
L-glutamine biosynthesis III
-
-
glucose degradation (oxidative)
-
-
Glutathione metabolism
-
-
Pentose phosphate pathway
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
Steroid hormone biosynthesis
-
-
C5-Branched dibasic acid metabolism
-
-
isoleucine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
arachidonate biosynthesis
-
-
Biotin metabolism
-
-
cis-vaccenate biosynthesis
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
petroselinate biosynthesis
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of mycolate biosynthesis
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
d-xylose degradation
-
-
D-xylose degradation V
-
-
adenosine nucleotides degradation I
-
-
Drug metabolism - other enzymes
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
inosine 5'-phosphate degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
methanol oxidation to carbon dioxide
-
-
methanol oxidation to formaldehyde II
-
-
mannitol degradation II
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
Steroid degradation
-
-
glycine metabolism
-
-
photorespiration
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
D-arabinose degradation I
-
-
degradation of pentoses
-
-
ethylene glycol degradation
-
-
2,4-dinitrotoluene degradation
-
-
L-valine degradation I
-
-
Valine, leucine and isoleucine degradation
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
photosynthesis
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
Aminobenzoate degradation
-
-
pinoresinol degradation
-
-
trans-caffeate degradation (aerobic)
-
-
vanillin and vanillate degradation I
-
-
vanillin and vanillate degradation II
-
-
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion)
-
-
factor 430 biosynthesis
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
siroheme biosynthesis
-
-
vitamin B12 metabolism
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
heme b biosynthesis I (aerobic)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Butanoate metabolism
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
TCA cycle VII (acetate-producers)
-
-
Alanine, aspartate and glutamate metabolism
-
-
L-alanine degradation IV
-
-
Taurine and hypotaurine metabolism
-
-
4-aminobutanoate degradation V
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
D-Glutamine and D-glutamate metabolism
-
-
GABA shunt
-
-
L-glutamate biosynthesis II
-
-
L-glutamate degradation X
-
-
L-ornithine biosynthesis II
-
-
L-glutamate biosynthesis III
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation II
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
Isoquinoline alkaloid biosynthesis
-
-
Phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
Tryptophan metabolism
-
-
flavin biosynthesis
-
-
Riboflavin metabolism
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
Nicotinate and nicotinamide metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
non-pathway related
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
4-nitrophenol degradation I
-
-
nitrate reduction II (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
allantoin degradation
-
-
Caffeine metabolism
-
-
urate conversion to allantoin I
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction III
-
-
sulfate reduction
-
-
Sulfur metabolism
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
ethanol degradation IV
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
ascorbate metabolism
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-ascorbate degradation V
-
-
manganese oxidation I
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
vernolate biosynthesis III
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
hydrogen oxidation I (aerobic)
-
-
Nitrotoluene degradation
-
-
3-chlorocatechol degradation
-
-
Benzoate degradation
-
-
catechol degradation to beta-ketoadipate
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
Fluorobenzoate degradation
-
-
phenol degradation
-
-
Toluene degradation
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
tryptophan metabolism
-
-
5,6-dimethylbenzimidazole biosynthesis I (aerobic)
-
-
methane oxidation to methanol I
-
-
Arginine and proline metabolism
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
bupropion degradation
-
-
Linoleic acid metabolism
-
-
melatonin degradation I
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
androgen and estrogen metabolism
-
-
cholesterol biosynthesis
-
-
epoxysqualene biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
Steroid biosynthesis
-
-
Primary bile acid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
cholesterol biosynthesis (plants)
-
-
ergosterol biosynthesis II
-
-
(+)-camphor degradation
-
-
(-)-camphor degradation
-
-
octane oxidation
glucocorticoid biosynthesis
-
-
mineralocorticoid biosynthesis
-
-
bile acid biosynthesis, neutral pathway
-
-
vitamin D3 biosynthesis
-
-
vitamin D3 metabolism
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
flexixanthin biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
Folate biosynthesis
-
-
rosmarinic acid biosynthesis II
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
ceramide degradation by alpha-oxidation
-
-
sphingolipid biosynthesis (yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
phenylmercury acetate degradation
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
Lysine biosynthesis
-
-
lysine metabolism
-
-
Monobactam biosynthesis
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
reductive acetyl coenzyme A pathway
-
-
Pyrimidine metabolism
-
-
Photosynthesis
-
-
nitrate assimilation
-
-
nitrogen fixation I (ferredoxin)
-
-
arsenate detoxification I (mammalian)
-
-
arsenate detoxification II (glutaredoxin)
-
-
arsenite oxidation II (respiratory)
-
-
tetrachloroethene degradation
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV (archaea)
-
-
L-methionine salvage from L-homocysteine
-
-
One carbon pool by folate
-
-
Selenocompound metabolism
-
-
L-methionine biosynthesis II (plants)
-
-
S-adenosyl-L-methionine cycle I
-
-
S-adenosyl-L-methionine cycle II
-
-
seleno-amino acid biosynthesis (plants)
-
-
capsaicin biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
Flavonoid biosynthesis
-
-
phenylpropanoid biosynthesis
phenylpropanoids methylation (ice plant)
-
-
scopoletin biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation)
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
L-lysine fermentation to acetate and butanoate
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate II
-
-
androstenedione degradation
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
isopropanol biosynthesis (engineered)
-
-
jasmonic acid biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-isoleucine degradation I
-
-
methyl tert-butyl ether degradation
-
-
oleate beta-oxidation
-
-
polyhydroxybutanoate biosynthesis
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
sitosterol degradation to androstenedione
-
-
butanoate fermentation
-
-
ectoine biosynthesis
-
-
autoinducer AI-1 biosynthesis
-
-
NAD salvage pathway V (PNC V cycle)
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
leukotriene biosynthesis
-
-
ethylene biosynthesis V (engineered)
-
-
TCA cycle VI (Helicobacter)
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
Starch and sucrose metabolism
-
-
fructan biosynthesis
-
-
starch degradation
-
-
starch degradation III
-
-
starch degradation IV
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
starch degradation II
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
cichoriin interconversion
-
-
daphnin interconversion
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
Other types of O-glycan biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
isoprenoid biosynthesis
-
-
methyl phomopsenoate biosynthesis
-
-
stellatic acid biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
beta-alanine biosynthesis II
-
-
beta-alanine degradation II
-
-
beta-Alanine metabolism
-
-
Lysine degradation
-
-
putrescine degradation IV
-
-
spermine and spermidine degradation II
-
-
superpathway of ornithine degradation
-
-
1,3-propanediol biosynthesis (engineered)
-
-
Galactose metabolism
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
xylitol degradation
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine metabolism
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
Rubisco shunt
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
purine deoxyribonucleosides salvage
-
-
adenosylcobinamide-GDP salvage from cobinamide I
-
-
superpathway of adenosylcobalamin salvage from cobinamide I
-
-
Calvin-Benson-Bassham cycle
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
ppGpp biosynthesis
-
-
ppGpp metabolism
-
-
mRNA capping I
-
-
adenosylcobinamide-GDP biosynthesis from cobyrinate a,c-diamide
-
-
adenosylcobinamideGDP salvage from cobinamide II
-
-
superpathway of adenosylcobalamin salvage from cobinamide II
-
-
Glycerophospholipid metabolism
-
-
phosphatidylethanolamine bioynthesis
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
cardiolipin biosynthesis
-
-
peptidoglycan biosynthesis I (meso-diaminopimelate containing)
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
heparan sulfate biosynthesis (late stages)
-
-
3-hydroxypropanoate cycle
-
-
itaconate degradation
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
Ether lipid metabolism
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
resolvin D biosynthesis
-
-
pectin degradation I
-
-
pectin degradation II
-
-
chlorophyll a degradation I
-
-
chlorophyll a degradation II
-
-
chlorophyll a degradation III
-
-
chlorophyll metabolism
-
-
chlorogenic acid degradation
-
-
acyl-CoA hydrolysis
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
2-oxobutanoate degradation II
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
L-serine biosynthesis I
-
-
serine metabolism
-
-
Inositol phosphate metabolism
-
-
phytate degradation I
-
-
2-arachidonoylglycerol biosynthesis
-
-
plasmalogen biosynthesis
-
-
tRNA processing
-
-
starch degradation I
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
Sphingolipid metabolism
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
metabolism of disaccharids
-
-
stachyose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Various types of N-glycan biosynthesis
-
-
fructan degradation
-
-
lactose and galactose degradation I
-
-
poly-hydroxy fatty acids biosynthesis
-
-
cyanophycin metabolism
-
-
muropeptide degradation
-
-
5-oxo-L-proline metabolism
-
-
nocardicin A biosynthesis
-
-
aspartate and asparagine metabolism
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
acrylonitrile degradation I
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea cycle
-
-
urea degradation II
-
-
3-hydroxyquinaldate biosynthesis
-
-
quinoxaline-2-carboxylate biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
cyanide detoxification II
-
-
Pantothenate and CoA biosynthesis
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine ribonucleosides degradation
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
cyanide detoxification I
-
-
(aminomethyl)phosphonate degradation
-
-
glyphosate degradation III
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
acetoin degradation
-
-
pyruvate fermentation to (R)-acetoin II
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
aminopropylcadaverine biosynthesis
-
-
bisucaberin biosynthesis
-
-
cadaverine biosynthesis
-
-
desferrioxamine B biosynthesis
-
-
desferrioxamine E biosynthesis
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
lupanine biosynthesis
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
gluconeogenesis
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
4-aminobenzoate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
cyanate degradation
glyoxylate assimilation
-
-
D-glucarate degradation I
-
-
D-glucarate degradation II
-
-
6-gingerol analog biosynthesis (engineered)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
polyhydroxydecanoate biosynthesis
-
-
geosmin biosynthesis
-
-
L-glutamate degradation II
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
rosmarinic acid biosynthesis I
-
-
dipicolinate biosynthesis
-
-
cyanide degradation
-
-
heme b biosynthesis II (oxygen-independent)
-
-
alanine racemization
-
-
ansatrienin biosynthesis
-
-
D-Alanine metabolism
-
-
L-alanine degradation I
-
-
D-galactose degradation I (Leloir pathway)
-
-
trehalose degradation VI (periplasmic)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
metabolism of amino sugars and derivatives
-
-
poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
-
-
poly(glycerol phosphate) wall teichoic acid biosynthesis
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis I (B. subtilis)
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis II (S. aureus)
-
-
UDP-N-acetyl-alpha-D-mannosaminouronate biosynthesis
-
-
3-phenylpropionate degradation
-
-
5-nitroanthranilate degradation
-
-
gentisate degradation I
-
-
chitin biosynthesis
-
-
degradation of hexoses
-
-
glucosylglycerol biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
streptomycin biosynthesis
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
kojibiose degradation
-
-
maltose degradation
-
-
trehalose degradation III
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-isoleucine biosynthesis III
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
diploterol biosynthesis
-
-
hopanoid biosynthesis (bacteria)
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
ethanol degradation III
-
-
L-isoleucine biosynthesis V
-
-
lupulone and humulone biosynthesis
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
pyruvate fermentation to acetate V
-
-
pyruvate fermentation to acetate VI
-
-
8-amino-7-oxononanoate biosynthesis III
-
-
adipate degradation
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
tetrahydrofolate biosynthesis
-
-
biotin biosynthesis
-
-
biotin biosynthesis from 8-amino-7-oxononanoate I
-
-
biotin biosynthesis from 8-amino-7-oxononanoate II
-
-
folate polyglutamylation
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
biotin-carboxyl carrier protein assembly
-
-
L-asparagine biosynthesis I
-
-
Aflatoxin biosynthesis
-
-
CO2 fixation in Crenarchaeota
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
jadomycin biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
Fe(II) oxidation
-
-
oxidative phosphorylation
-
-
ATP biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
1000 U/ml, 10 mg/ml
Manually annotated by BRENDA team
-
51 g/l of casein hydrolyzed with Alcalase and 2.7 g/l of phenylacetic acid (PhAc), the following carbon substrates are tested, individually and combined: glucose, glycerol, and lactose (present in cheese whey). Glycerol and glucose are effective nutrients for the microorganism growth but delay the penicillin G acylase production. Cheese whey always increases enzyme production and cell mass. However lactose (present in cheese whey) is not a significant carbon source for Bacillus megaterium. Phenylacetic acid, amino acids, and small peptides present in the hydrolyzed casein are the actual carbon sources for enzyme production. Replacement of hydrolyzed casein by free amino acids, 10.0 g/l, leads to a significant increase in enzyme production (approximately 150%), with a preferential consumption of alanine, aspartic acid, glycine, serine, arginine, threonine, lysine, and glutamic acid. A decrease of the enzyme production is observed when 20.0 g/l of amino acids are used. Using the single omission technique, it is shown that none of the 18 tested amino acids is essential for enzyme production. The use of a medium containing eight of the preferentially consumed amino acids leads to similar enzyme production level obtained when using 18 amino acids. Phenylacetic acid, up to 2.7 g/l, does not inhibit enzyme production, even if added at the beginning of the cultivation
Manually annotated by BRENDA team
-
cells grown in a medium containing L-tryptophan as the sole carbon, nitrogen, and energy source
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
recombinant SirB
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Bacillus megaterium)