Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Vosberg, H.P.
    DNA topoisomerases: enzymes that control DNA conformation (1985), Curr. Top. Microbiol. Immunol., 114, 19-102.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
5.6.2.1 additional information enzyme is posttranslationally modified and presumably regulated by phosphorylation eukaryota
5.6.2.1 Protein HMG17 stimulates eukaryota
5.6.2.2 histone H1 promotes DNA network formation eukaryota
5.6.2.2 HMG17 protein promotes DNA network formation eukaryota
5.6.2.2 additional information
-
Homo sapiens
5.6.2.2 additional information modification by poly(ADP)ribosylation eukaryota
5.6.2.2 additional information modification by poly(ADP)ribosylation Bos taurus

Inhibitors

EC Number Inhibitors Comment Organism Structure
5.6.2.1 actinomycin D
-
Escherichia coli
5.6.2.1 actinomycin D
-
eukaryota
5.6.2.1 Berenil mitochondrial enzyme, not nuclear enzyme Rattus norvegicus
5.6.2.1 Berenil
-
Trypanosoma cruzi
5.6.2.1 Ethidium bromide mitochondrial enzyme, not nuclear enzyme Rattus norvegicus
5.6.2.1 Ethidium bromide
-
Trypanosoma cruzi
5.6.2.1 heparin
-
eukaryota
5.6.2.1 heparin
-
Homo sapiens
5.6.2.1 heparin
-
Mus musculus
5.6.2.1 Mg2+ above 20 mM Escherichia coli
5.6.2.1 additional information poly(ADP)ribosylation leads to a loss in relaxing activity eukaryota
5.6.2.1 NEM
-
Bos taurus
5.6.2.1 NEM
-
Brassica oleracea
5.6.2.1 NEM
-
eukaryota
5.6.2.1 Neomycin sulfate
-
Escherichia coli
5.6.2.1 p-hydroxymercuribenzoate
-
eukaryota
5.6.2.1 poly(dG)
-
eukaryota
5.6.2.1 poly(dG)
-
Rattus norvegicus
5.6.2.1 poly(rG)
-
eukaryota
5.6.2.1 single-stranded DNA strong inhibitor of relaxation reaction Escherichia coli
5.6.2.2 4'-(9-acridinylamino)methansulfon-m-anisidide
-
eukaryota
5.6.2.2 Anticancer drug VM26
-
eukaryota
5.6.2.2 Anticancer drug VP16-213
-
eukaryota
5.6.2.2 coumermycin coumermycin A1 Bacillus subtilis
5.6.2.2 coumermycin concentration required to observe inhibition with the eukaryotic enzyme is much higher than those needed to inhibit bacterial gyrase Bacteria
5.6.2.2 coumermycin coumermycin A1 Escherichia coli
5.6.2.2 coumermycin concentration required to observe inhibition with the eukaryotic enzyme is much higher than those needed to inhibit bacterial gyrase; coumermycin A1 eukaryota
5.6.2.2 coumermycin coumermycin A1 Micrococcus luteus
5.6.2.2 ellipticines
-
eukaryota
5.6.2.2 ellipticines
-
Homo sapiens
5.6.2.2 Nalidixic acid
-
Bacillus subtilis
5.6.2.2 Nalidixic acid concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase Bacteria
5.6.2.2 Nalidixic acid
-
Escherichia coli
5.6.2.2 Nalidixic acid concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase eukaryota
5.6.2.2 Nalidixic acid
-
Micrococcus luteus
5.6.2.2 novobiocin concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase Bacteria
5.6.2.2 novobiocin
-
Escherichia coli
5.6.2.2 novobiocin concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase eukaryota
5.6.2.2 novobiocin
-
Rattus norvegicus
5.6.2.2 Oxolinic acid
-
Bacillus subtilis
5.6.2.2 Oxolinic acid concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase Bacteria
5.6.2.2 Oxolinic acid
-
Escherichia coli
5.6.2.2 Oxolinic acid concentration required to observe inhibition with the eukaryotic enzyme is much higher than that needed to inhibit bacterial gyrase eukaryota
5.6.2.2 Oxolinic acid
-
Micrococcus luteus
5.6.2.2 Oxolinic acid
-
Tequatrovirus T4
5.6.2.2 single-stranded DNA strong inhibition of relaxation eukaryota

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
5.6.2.2 0.28
-
ATP
-
Drosophila melanogaster
5.6.2.2 0.63
-
dATP
-
Drosophila melanogaster

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
5.6.2.1 mitochondrion
-
Bos taurus 5739
-
5.6.2.1 mitochondrion liver Rattus norvegicus 5739
-
5.6.2.1 mitochondrion oocytes Xenopus laevis 5739
-
5.6.2.1 nucleus
-
Drosophila sp. (in: flies) 5634
-
5.6.2.1 nucleus
-
Trypanosoma cruzi 5634
-
5.6.2.1 nucleus associated with chromatin eukaryota 5634
-
5.6.2.1 nucleus associated with chromatin Mus musculus 5634
-
5.6.2.1 nucleus associated with chromatin Homo sapiens 5634
-
5.6.2.1 nucleus associated with chromatin Rattus norvegicus 5634
-
5.6.2.1 nucleus associated with chromatin Bos taurus 5634
-
5.6.2.1 nucleus associated with chromatin Triticum aestivum 5634
-
5.6.2.1 nucleus associated with chromatin Xenopus laevis 5634
-
5.6.2.1 nucleus associated with chromatin Brassica oleracea 5634
-
5.6.2.1 nucleus associated with chromatin Ustilago maydis 5634
-
5.6.2.2 nucleus
-
Drosophila melanogaster 5634
-
5.6.2.2 nucleus
-
eukaryota 5634
-
5.6.2.2 nucleus
-
Homo sapiens 5634
-
5.6.2.2 nucleus
-
Rattus norvegicus 5634
-
5.6.2.2 nucleus
-
Bos taurus 5634
-
5.6.2.2 nucleus
-
Xenopus laevis 5634
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
5.6.2.1 Ca2+
-
Bos taurus
5.6.2.1 Ca2+ can replace Mg2+ in stimulation to some degree Escherichia coli
5.6.2.1 Co2+ can replace Mg2+ in stimulation to some degree Escherichia coli
5.6.2.1 Mg2+
-
Mus musculus
5.6.2.1 Mg2+
-
Homo sapiens
5.6.2.1 Mg2+
-
Rattus norvegicus
5.6.2.1 Mg2+
-
Bos taurus
5.6.2.1 Mg2+
-
Trypanosoma cruzi
5.6.2.1 Mg2+
-
Brassica oleracea
5.6.2.1 Mg2+ required Bacteria
5.6.2.1 Mg2+ required Escherichia coli
5.6.2.1 Mg2+ carries Mg2+, tightly bound Escherichia coli
5.6.2.1 Na+
-
Rattus norvegicus
5.6.2.1 Na+
-
Brassica oleracea
5.6.2.1 Na+ optimal activity at 150-200 mM Na+ or other monovalent cations. Below a concentration of 100 mM Na+, the enzyme acts in a processive fashion, and above 150 mM in a nonprocessive fashion eukaryota

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
5.6.2.1 additional information
-
overview eukaryota
5.6.2.1 65000 70000
-
Xenopus laevis
5.6.2.1 105000
-
-
Escherichia coli
5.6.2.1 120000
-
-
Micrococcus luteus
5.6.2.2 95000
-
2 * 95000, gyrA subunit, + 2 * 105000, gyrB subunit Escherichia coli
5.6.2.2 95000
-
2 * 95000 + 2 * 115000 Micrococcus luteus
5.6.2.2 105000
-
2 * 95000, gyrA subunit, + 2 * 105000, gyrB subunit Escherichia coli
5.6.2.2 115000
-
2 * 95000 + 2 * 115000 Micrococcus luteus
5.6.2.2 400000
-
-
Escherichia coli

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
5.6.2.1 additional information Drosophila sp. (in: flies)
-
?
-
?
5.6.2.1 additional information Mus musculus
-
?
-
?
5.6.2.1 additional information Escherichia coli
-
?
-
?
5.6.2.1 additional information Homo sapiens
-
?
-
?
5.6.2.1 additional information Rattus norvegicus
-
?
-
?
5.6.2.1 additional information Bos taurus
-
?
-
?
5.6.2.1 additional information Priestia megaterium
-
?
-
?
5.6.2.1 additional information Xenopus laevis
-
?
-
?
5.6.2.1 additional information Micrococcus luteus
-
?
-
?
5.6.2.1 additional information eukaryota may participate in recombination events ?
-
?
5.6.2.1 additional information eukaryota provides a swivel during replication ?
-
?
5.6.2.1 additional information Bacteria enzyme controls repair function ?
-
?
5.6.2.1 additional information eukaryota probably engaged in the assembly of chromatin ?
-
?

Organism

EC Number Organism UniProt Comment Textmining
5.6.2.1 Agrobacterium tumefaciens
-
-
-
5.6.2.1 Avibacterium paragallinarum
-
-
-
5.6.2.1 Bacteria
-
-
-
5.6.2.1 Bos taurus
-
-
-
5.6.2.1 Brassica oleracea
-
-
-
5.6.2.1 Drosophila sp. (in: flies)
-
Drosophila melanogaster
-
5.6.2.1 Escherichia coli
-
-
-
5.6.2.1 eukaryota
-
-
-
5.6.2.1 Homo sapiens
-
-
-
5.6.2.1 Micrococcus luteus
-
-
-
5.6.2.1 Mus musculus
-
-
-
5.6.2.1 Priestia megaterium
-
-
-
5.6.2.1 Rattus norvegicus
-
-
-
5.6.2.1 Salmonella enterica subsp. enterica serovar Typhimurium
-
-
-
5.6.2.1 Triticum aestivum
-
-
-
5.6.2.1 Trypanosoma cruzi
-
-
-
5.6.2.1 Ustilago maydis
-
-
-
5.6.2.1 Xenopus laevis
-
in Ref. 21 steht nur Xenopus sp.
-
5.6.2.2 Bacillus subtilis
-
-
-
5.6.2.2 Bacteria
-
-
-
5.6.2.2 Bos taurus
-
calf
-
5.6.2.2 Drosophila melanogaster
-
-
-
5.6.2.2 Escherichia coli
-
-
-
5.6.2.2 eukaryota
-
-
-
5.6.2.2 Homo sapiens
-
-
-
5.6.2.2 Micrococcus luteus
-
-
-
5.6.2.2 Pseudomonas aeruginosa
-
-
-
5.6.2.2 Rattus norvegicus
-
-
-
5.6.2.2 Tequatrovirus T4
-
-
-
5.6.2.2 Xenopus laevis
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
5.6.2.1
-
Xenopus laevis
5.6.2.2
-
Homo sapiens

Reaction

EC Number Reaction Comment Organism Reaction ID
5.6.2.1 ATP-independent breakage of single-stranded DNA, followed by passage and rejoining mechanism eukaryota
5.6.2.1 ATP-independent breakage of single-stranded DNA, followed by passage and rejoining alters the linking number in steps of one eukaryota
5.6.2.1 ATP-independent breakage of single-stranded DNA, followed by passage and rejoining alters the linking number in steps of one Escherichia coli
5.6.2.2 ATP-dependent breakage, passage and rejoining of double-stranded DNA processive mode of the reaction can be shifted to a distributive mode under three different conditions: 1. high ionic strength, above 170 mM, 2. high Mg2+ concentration, above 15 mM, 3. pH-values above 10 in glycine buffer eukaryota
5.6.2.2 ATP-dependent breakage, passage and rejoining of double-stranded DNA mechanistic models of DNA gyrase Bacteria

Source Tissue

EC Number Source Tissue Comment Organism Textmining
5.6.2.1 egg
-
Drosophila sp. (in: flies)
-
5.6.2.1 embryo
-
Drosophila sp. (in: flies)
-
5.6.2.1 embryo
-
Mus musculus
-
5.6.2.1 germ
-
Triticum aestivum
-
5.6.2.1 liver
-
Rattus norvegicus
-
5.6.2.1 liver
-
Bos taurus
-
5.6.2.1 oocyte
-
Xenopus laevis
-
5.6.2.1 thymus
-
Bos taurus
-
5.6.2.1 tissue culture
-
Mus musculus
-
5.6.2.1 tissue culture
-
Homo sapiens
-
5.6.2.2 HeLa cell
-
Homo sapiens
-
5.6.2.2 liver
-
Rattus norvegicus
-
5.6.2.2 oocyte
-
Xenopus laevis
-
5.6.2.2 thymus
-
Bos taurus
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
5.6.2.1 additional information
-
Drosophila sp. (in: flies) ?
-
?
5.6.2.1 additional information
-
Mus musculus ?
-
?
5.6.2.1 additional information
-
Escherichia coli ?
-
?
5.6.2.1 additional information
-
Homo sapiens ?
-
?
5.6.2.1 additional information
-
Rattus norvegicus ?
-
?
5.6.2.1 additional information
-
Bos taurus ?
-
?
5.6.2.1 additional information
-
Priestia megaterium ?
-
?
5.6.2.1 additional information
-
Xenopus laevis ?
-
?
5.6.2.1 additional information
-
Micrococcus luteus ?
-
?
5.6.2.1 additional information catalyzes the conversion of a paranemic to aplectonemic joint Escherichia coli ?
-
?
5.6.2.1 additional information catalyzes the conversion of a paranemic to aplectonemic joint Ustilago maydis ?
-
?
5.6.2.1 additional information enzyme catalyzes: 1. linking or intertwining of covalently closed single-stranded DNA rings containing complementary base sequences, 2. formation of topological knots in single-stranded DNA rings Escherichia coli ?
-
?
5.6.2.1 additional information recognizes DNA in a nonrandom fashion eukaryota ?
-
?
5.6.2.1 additional information phosphoryltosyl linkage between DNA and enzyme Escherichia coli ?
-
?
5.6.2.1 additional information catalyzes catenene formation, a reaction specific for type II topoisomerase Rattus norvegicus ?
-
?
5.6.2.1 additional information a novel type of reaction is detected in the course of which an enzyme-attached single-stranded fragment is transferred and covalently ligated to the 5'-end of a separate double-stranded DNA molecule eukaryota ?
-
?
5.6.2.1 additional information site-specific binding to DNA substrate, enzyme linkage to 5'-ends of DNA Escherichia coli ?
-
?
5.6.2.1 additional information enzyme promotes intertwining of complementary single-stranded DNA circles by forming relaxed duplex circles covalently closed in both strands. If denatured supercoiled PM2-DNA is used as a substrate, relaxed duplex circles as well as highly knotted molecules are seen among the products eukaryota ?
-
?
5.6.2.1 additional information may participate in recombination events eukaryota ?
-
?
5.6.2.1 additional information provides a swivel during replication eukaryota ?
-
?
5.6.2.1 additional information enzyme controls repair function Bacteria ?
-
?
5.6.2.1 additional information probably engaged in the assembly of chromatin eukaryota ?
-
?
5.6.2.1 Nicked circular DNA
-
Homo sapiens Large catenated DNA networks
-
?
5.6.2.1 Nicked circular DNA
-
Rattus norvegicus Large catenated DNA networks
-
?
5.6.2.1 Nicked circular DNA enzyme catalyzes: 1. linking or intertwining of covalently closed single-stranded DNA rings containing complementary base sequences, 2. formation of topological knots in single-stranded DNA rings, 3. catenation and decatenation of double-stranded DNA circles, if one of the reacting DNA molecules has a nick Escherichia coli Large catenated DNA networks
-
?
5.6.2.1 supercoiled DNA relaxation Salmonella enterica subsp. enterica serovar Typhimurium relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Bacteria relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation eukaryota relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Drosophila sp. (in: flies) relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Mus musculus relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Escherichia coli relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Homo sapiens relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Rattus norvegicus relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Bos taurus relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Triticum aestivum relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Priestia megaterium relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Xenopus laevis relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Micrococcus luteus relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Trypanosoma cruzi relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Brassica oleracea relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Agrobacterium tumefaciens relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Avibacterium paragallinarum relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation Ustilago maydis relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA relaxation of both negatively and positively supercoiled DNA circles eukaryota relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA specific for negatively supercoiled DNA, no activity with positively supercoiled DNA Bacteria relaxed closed circular DNA
-
?
5.6.2.1 supercoiled DNA specific for negatively supercoiled DNA, no activity with positively supercoiled DNA Escherichia coli relaxed closed circular DNA
-
?
5.6.2.2 dATP + negatively supercoiled circular DNA
-
Drosophila melanogaster dADP + phosphate + relaxed circular DNA
-
?
5.6.2.2 additional information
-
Escherichia coli ?
-
?
5.6.2.2 additional information
-
Bos taurus ?
-
?
5.6.2.2 additional information
-
Tequatrovirus T4 ?
-
?
5.6.2.2 additional information the enzyme can alter the linking number of DNA only in steps of two Drosophila melanogaster ?
-
?
5.6.2.2 additional information the enzyme can alter the linking number of DNA only in steps of two eukaryota ?
-
?
5.6.2.2 additional information ATP hydrolysis Bacteria ?
-
?
5.6.2.2 additional information ATP hydrolysis Xenopus laevis ?
-
?
5.6.2.2 additional information the following reactions are catalyzed in an ATP-dependent fashion: relaxation of superhelical turns, catenation, decatenation, unknotting of circular duplex DNA Drosophila melanogaster ?
-
?
5.6.2.2 additional information the following reactions are catalyzed in an ATP-dependent fashion: relaxation of superhelical turns, catenation, decatenation, unknotting of circular duplex DNA Bacteria ?
-
?
5.6.2.2 additional information ATP-dependent generation of negative supercoils Bacteria ?
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Drosophila melanogaster monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Bacteria monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation eukaryota monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Bacillus subtilis monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Escherichia coli monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Homo sapiens monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Rattus norvegicus monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Bos taurus monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Pseudomonas aeruginosa monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Xenopus laevis monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Micrococcus luteus monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 network of DNA rings + ATP + H2O decatenation Tequatrovirus T4 monomeric DNA circles + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Drosophila melanogaster catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Bacteria catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation eukaryota catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Bacillus subtilis catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Escherichia coli catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Homo sapiens catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Rattus norvegicus catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Bos taurus catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Pseudomonas aeruginosa catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Xenopus laevis catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Micrococcus luteus catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O catenation Tequatrovirus T4 catenated DNA networks + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Drosophila melanogaster relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Bacteria relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation eukaryota relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Bacillus subtilis relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Escherichia coli relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Homo sapiens relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Rattus norvegicus relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Bos taurus relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Pseudomonas aeruginosa relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Xenopus laevis relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Micrococcus luteus relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation Tequatrovirus T4 relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O relaxation in absence of ATP Bacteria relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O ATP-dependent relaxation of negative and positive supercoils eukaryota relaxed DNA + ADP + phosphate
-
?
5.6.2.2 supercoiled DNA + ATP + H2O positive supercoils are relaxed in presence of beta,gamma-imido ATP Bacteria relaxed DNA + ADP + phosphate
-
?

Subunits

EC Number Subunits Comment Organism
5.6.2.1 monomer 1 * 105000 Escherichia coli
5.6.2.2 dimer
-
eukaryota
5.6.2.2 dimer
-
Bos taurus
5.6.2.2 dimer 2 * 166000-175000 Drosophila melanogaster
5.6.2.2 tetramer
-
Bacteria
5.6.2.2 tetramer
-
Bacillus subtilis
5.6.2.2 tetramer
-
Pseudomonas aeruginosa
5.6.2.2 tetramer 2 * 95000, gyrA subunit, + 2 * 105000, gyrB subunit Escherichia coli
5.6.2.2 tetramer 2 * 95000 + 2 * 115000 Micrococcus luteus