Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Br- + H2O2 + (3E,6R,7R)-laurediol
deacetyllaurencin + H2O
-
-
-
-
?
Br- + H2O2 + (3R)-3-bromo-2,6-dimethylhept-5-en-2-ol
3,5-dibromo-2,6-dimethylheptane-2,6-diol + H2O
-
-
70% yield, at pH 6.0
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
bromochlorodimedone + ?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1-methoxynaphthalene
1-methoxy-4-bromonaphthalene + H2O
-
-
-
-
?
Br- + H2O2 + 1-phenylpent-4-en-1-ol
4-bromo-1-phenylpentane-1,5-diol + 5-bromo-1-phenylpentane-1,4-diol + 2-(bromomethyl)-5-phenyltetrahydrofuran + H2O
-
-
30% yield of 4-bromo-1-phenylpentane-1,5-diol, 28% yield of 5-bromo-1-phenylpentane-1,4-diol, and 25% yield of 2-(bromomethyl)-5-phenyltetrahydrofuran, at pH 6.0
-
?
Br- + H2O2 + 2,4,6-tribromophenol
1,3,6,8-tetrabromodibenzo-p-dioxin
-
formation of ppb-level yields of 1,3,6,8-tetrabromodibenzo-p-dioxin through direct condensation. Additionally, 1,3,7,9-tetrabromodibenzo-p-dioxin, 1,2,4,7-tetrabromodibenzo-p-dioxin, and/or 1,2,4,8-tetrabromodibenzo-p-dioxin and 1,3,7-tribromodibenzo-p-dioxin and 1,3,8-tribromodibenzo-p-dioxin are frequently formed but at lower yields. Reaction probably proceeds via bromine shifts or Smiles rearrangements, whereas the tribromodibenzo-p-dioxins may result from subsequent debromination processes
-
?
Br- + H2O2 + 2-hydroxybenzyl alcohol
2,4,6-tribromobenzyl alcohol + H2O
-
-
-
-
?
Br- + H2O2 + 2-methoxyphenol
2-bromo-6-methoxyphenol + 4-bromo-6-methoxyphenol + H2O
-
56% of product, in a 21/79 mixture of o-/p-regioisomers, plus 10% 2,4-dibromo-6-methoxyphenol
-
?
Br- + H2O2 + 2-methylphenol
2-bromo-6-methylphenol + 4-bromo-6-methylphenol + H2O
-
68% of product, in a 16/84 mixture of o-/p-regioisomers, plus 4% 2,4-dibromophenol
-
?
Br- + H2O2 + 2-t-butylphenol
2-bromo-6-t-butylphenol + 4-bromo-6-t-butylphenol + H2O
-
42% of product, in a 36/64 mixture of o-/p-regioisomers, plus 2% 2,4-dibromo-6-t-butylphenol
-
?
Br- + H2O2 + 4-pentynoic acid
(5E)-bromomethylidenetetrahydro-2-furanone
-
catalyzes the bromolactonization of 4-pentynoic acid forming (5E)-bromomethylidenetetrahydro-2-furanone. Formation of the bromofuranone likely results from an initial bromination reaction at the terminal alkyne, followed by cyclization from intermolecular nucleophilic attack by the terminal hydroxyl group
-
-
?
Br- + H2O2 + 5-methyl-1-phenylhex-4-en-1-ol
4-bromo-5-methyl-1-phenylhexane-1,5-diol + 2-(1-bromo-1-methylethyl)-5-phenyltetrahydrofuran + 3-bromo-2,2-dimethyl-6-phenyltetrahydro-2H-pyran + H2O
-
-
69% yield of 4-bromo-5-methyl-1-phenylhexane-1,5-diol, 6% yield of 2-(1-bromo-1-methylethyl)-5-phenyltetrahydrofuran, and 9% yield of 3-bromo-2,2-dimethyl-6-phenyltetrahydro-2H-pyran, at pH 6.0
-
?
Br- + H2O2 + aniline
o-bromoaniline + p-bromoaniline + ?
Br- + H2O2 + anisole
p-bromoanisole + o-bromoanisole + H2O
-
-
-
-
?
Br- + H2O2 + cyclohexene
trans-1-hydroxy-2-bromocyclohexane
-
-
-
-
?
Br- + H2O2 + cytidine
5-bromocytidine + H2O
-
-
-
-
?
Br- + H2O2 + cytosine
5-bromocytosine + H2O
-
-
-
-
?
Br- + H2O2 + methyl pyrrole-2-carboxylate
methyl 4-bromo-1H-pyrrole-2-carboxylate + methyl 5-bromo-1H-pyrrole-2-carboxylate + H2O
-
quantitative conversion within 24 h, 94% of product in 93/7 ratio of 4-/5-substituted regioisomers
-
?
Br- + H2O2 + methyl pyrrole-2-carboxylate
methyl 5-amino-4-bromocyclopenta-1,3-diene-1-carboxylate + methyl 5-amino-3-bromocyclopenta-1,3-diene-1-carboxylate + methyl 5-amino-3,4-dibromocyclopenta-1,3-diene-1-carboxylate + H2O
-
-
5% yield of methyl 5-amino-4-bromocyclopenta-1,3-diene-1-carboxylate, 59% yield of methyl 5-amino-3-bromocyclopenta-1,3-diene-1-carboxylate, and 5% yield of methyl 5-amino-3,4-dibromocyclopenta-1,3-diene-1-carboxylate, at pH 6.3 and 25ưC
-
?
Br- + H2O2 + monochlorodimedon
?
-
-
-
?
Br- + H2O2 + monochlorodimedone
?
-
-
-
-
?
Br- + H2O2 + monochlorodimedone
? + H2O
Br- + H2O2 + monochlorodimedone
H2O + ?
-
-
-
-
?
Br- + H2O2 + monochlorodimedone
monobromo-monochlorodimedone + H2O
-
-
-
-
?
Br- + H2O2 + o-dianisidine
?
Br- + H2O2 + phenol
2,4,6-tribromophenol + H2O
-
-
-
-
?
Br- + H2O2 + phenol
2-bromophenol + 4-bromophenol + H2O
-
69% of product, in a 91/9 mixture of o-/p-regioisomers, plus 3% 2,4-dibromo-6-methylphenol and some 2,4,6-tribromophenol
-
?
Br- + H2O2 + phenol red
phenol blue + ?
-
-
-
-
?
Br- + H2O2 + pyrazole
4-bromopyrazole + H2O
-
-
-
-
?
Br- + H2O2 + styrene
DL-1 -bromo-2-hydroxy-2-phenylethane + H2O
-
-
-
-
?
Br- + H2O2 + thiophene
2-bromothiophene + H2O
-
-
-
-
?
Br- + H2O2 + trans-cinnamic acid
(+/-)-erythro-2-bromo-3-hydroxy-3-phenylpropionic acid + H2O
-
-
-
-
?
Br- + H2O2 + trans-cinnamyl alcohol
(+/-)-1,3-dihydroxy-2-bromo-3-phenylpropane + H2O
-
-
-
-
?
Br- + H2O2 + uracil
5-bromouracil + H2O
-
-
-
-
?
Capso + Br- + peracetic acid
?
cytosine + Br- + peracetic acid
5-bromocytosine + ?
Hepes + Br- + peracetic acid
?
I- + H2O2 + monochlorodimedone
? + H2O
-
-
-
?
I- + H2O2 + o-dianisidine
?
I- + H2O2 + pyrazole
4-iodopyrazole + H2O
-
-
-
-
?
I- + H2O2 + uracil
5-iodouracil + H2O
-
-
-
-
?
KBr + 2 H2O
KH + HBr + H2O2
-
-
-
?
monochlorodimedone + Br- + H2O2
?
Mops + Br- + peracetic acid
5-bromocytosine + ?
phenol + H2O2 + Br-
4-bromophenol + 2-bromophenol + H2O
-
-
4-bromophenol + 2-bromophenol at the ratio of 4:1
-
?
taurine + Br- + peracetic acid
bromotaurine + ?
Tes + Br- + peracetic acid
?
Tris + Br- + peracetic acid
?
additional information
?
-
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione

?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone. Requirement of a catalytic triad in the halogenation mechanism
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + 1,1-dimethyl-4-chloro-3,5-cyclohexanedione
?
-
i.e. monochlorodimedone
-
-
?
Br- + H2O2 + aniline

o-bromoaniline + p-bromoaniline + ?
-
no activity in absence of Br-
-
-
?
Br- + H2O2 + aniline
o-bromoaniline + p-bromoaniline + ?
-
in absence of Br- the enzyme oxidizes aniline via azobenzene and azoxybenzene finally into nitrobenzene
-
-
?
Br- + H2O2 + monochlorodimedone

? + H2O
-
-
-
?
Br- + H2O2 + monochlorodimedone
? + H2O
-
-
-
?
Br- + H2O2 + monochlorodimedone
? + H2O
-
-
-
?
Br- + H2O2 + monochlorodimedone
? + H2O
-
-
-
-
?
Br- + H2O2 + o-dianisidine

?
-
-
-
?
Br- + H2O2 + o-dianisidine
?
-
-
-
?
Capso + Br- + peracetic acid

?
-
-
-
-
?
Capso + Br- + peracetic acid
?
-
-
-
-
?
cytosine + Br- + peracetic acid

5-bromocytosine + ?
-
-
-
-
?
cytosine + Br- + peracetic acid
5-bromocytosine + ?
-
-
-
-
?
Hepes + Br- + peracetic acid

?
-
-
-
-
?
Hepes + Br- + peracetic acid
?
-
-
-
-
?
I- + H2O2

triiodide + ?
-
-
-
-
?
I- + H2O2
triiodide + ?
-
-
-
?
I- + H2O2 + o-dianisidine

?
-
-
-
?
I- + H2O2 + o-dianisidine
?
-
-
-
?
monochlorodimedone + Br- + H2O2

?
-
-
-
-
?
monochlorodimedone + Br- + H2O2
?
-
-
-
-
?
Mops + Br- + peracetic acid

5-bromocytosine + ?
-
-
-
-
?
Mops + Br- + peracetic acid
5-bromocytosine + ?
-
-
-
-
?
taurine + Br- + peracetic acid

bromotaurine + ?
-
-
-
-
?
taurine + Br- + peracetic acid
bromotaurine + ?
-
-
-
-
?
Tes + Br- + peracetic acid

?
-
-
-
-
?
Tes + Br- + peracetic acid
?
-
-
-
-
?
Tris + Br- + peracetic acid

?
-
-
-
-
?
Tris + Br- + peracetic acid
?
-
-
-
-
?
additional information

?
-
-
strong brominating aactivity, weak chlorinating and iodating activities, catalyzes both benzylic and aromatic hydroxylations (e.g., of toluene and naphthalene)
-
-
?
additional information
?
-
enzyme uses hydrogen peroxide and bromide yielding molecular bromine as reagent for electrophilic hydrocarbon bromination
-
-
?
additional information
?
-
-
plays an important role in eliminating epiphytic organisms, especially microalgae on the surface. The activity increased during winter and spring and peaked in late spring. Functions to eliminate H2O2 compensating for catalase
-
-
?
additional information
?
-
-
the alkyl hydroperoxides ethyl hydroperoxide, cuminyl hydroperoxide, and tert-butyl hydroperoxide do not support bromination of dioxygen formation catalyzed by V-BrPO
-
-
?
additional information
?
-
no substrate: chloride
-
-
?
additional information
?
-
-
no substrate: chloride
-
-
?
additional information
?
-
-
the natural brominated compound is dibromoacetaldehyde
-
-
?
additional information
?
-
-
the natural brominated compound is dibromoacetaldehyde
-
-
?
additional information
?
-
-
the alkyl hydroperoxides ethyl hydroperoxide, cuminyl hydroperoxide, and tert-butyl hydroperoxide do not support bromination of dioxygen formation catalyzed by V-BrPO
-
-
?
additional information
?
-
-
the lowest specific bromoperoxidase activity occurs during the midexponential phase of growth and then increases steeply during the late stationary phase, suggesting that bromoperoxidase production is part of secondary metabolism
-
-
?
additional information
?
-
no activity with Cl-
-
-
?
additional information
?
-
no activity with Cl-
-
-
?
additional information
?
-
-
the role of the enzyme is related to its activity as a catalase rather than as a halogenatingt agent
-
-
?
additional information
?
-
-
no substrate: chloride
-
-
?
additional information
?
-
no substrate: chloride
-
-
?
additional information
?
-
no substrate: chloride
-
-
?
additional information
?
-
besides its phytase activity (EC 3.1.3.8) with myo-inositol hexakisphosphate, the enzyme rSt-Phy also shows haloperoxidase activity. Enzyme rSt-Phy brings out a change in color of phenol red from red-orange to blue-violet in the presence of metavanadate ions, H2O2 and KBr in the reaction mixture, which confirms the bromoperoxidation of phenol red. Only histidine acid phosphatases with the active site sequence RHGXRXP can function as haloperoxidase, when vanadate ion is incorporated into the active site. Vanadate is a phosphate analogue, which is generally considered to bind as a transition state analogue to the phosphoryl transfer enzymes and inhibits their activities
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Brindley, A.A.; Dalby, A.R.; Isupov, M.N.; Littlechild, J.A.
Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis
Acta Crystallogr. Sect. D
54
454-457
1998
Corallina officinalis
brenda
Hofrichter, M.; Ullrich, R.
Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance
Appl. Microbiol. Biotechnol.
71
276-288
2006
Agrocybe aegerita
brenda
Itoh, N.; Morinaga, N.; Kouzai, T.
Oxidation of aniline to nitrobenzene by nonheme bromoperoxidase
Biochem. Mol. Biol. Int.
29
785-791
1993
Pseudomonas putida, Corallina pilulifera
brenda
Sheffield, D.J.; Mort, A.J.; Harry, T.; Smith, A.J.; Rogers, L.J.
Bromoperoxidase of the macroalga Corallina officinalis
Biochem. Soc. Trans.
20
284S
1992
Corallina officinalis
brenda
Sheffield, D.J.; Smith, A.J.; Harry, T.R.; Rogers, L.J.
Thermostability of the vanadium bromoperoxidase from Corallina officinalis
Biochem. Soc. Trans.
21
445S
1993
Corallina officinalis
brenda
Arber, J.M.; de Boer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R.
Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum
Biochemistry
28
7968-7973
1989
Ascophyllum nodosum
brenda
Soedjak, H.S.; Butler, A.
Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines
Biochemistry
29
7974-7981
1990
Macrocystis pyrifera, Fucus distichus
brenda
Tromp, M.G.; Olafsson, G.; Krenn, B.E.; Wever, R.
Some structural aspects of vanadium bromoperoxidase from Ascophyllum nodosum
Biochim. Biophys. Acta
1040
192-198
1990
Ascophyllum nodosum
brenda
Pelletier, I.; Altenbuchner, J.; Mattes, R.
A catalytic triad is required by the non-heme haloperoxidases to perform halogenation
Biochim. Biophys. Acta
1250
149-157
1995
Pseudomonas fluorescens
brenda
Krenn, B.E.; Plat, H.; Wever, R.
Purification and some characteristics of a non-haem bromoperoxidase from Streptomyces aureofaciens
Biochim. Biophys. Acta
952
255-260
1988
Kitasatospora aureofaciens
brenda
Rorrer, G.L.; Tucker, M.P.; Cheney, D.P.; Maliakal, S.
Bromoperoxidase activity in microplantlet suspension cultures of the macrophytic red alga Ochtodes secundiramea
Biotechnol. Bioeng.
74
389-395
2001
Ochtodes secundiramea
brenda
Butler, A.
Vanadium haloperoxidases
Curr. Opin. Chem. Biol.
2
279-285
1998
Corallina officinalis, Ascophyllum nodosum
brenda
Itoh, N.; Hasan, A.K.; Izumi, Y.; Yamada, H.
Substrate specificity, regiospecificity and stereospecificity of halogenation reactions catalyzed by non-heme-type bromoperoxidase of Corallina pilulifera
Eur. J. Biochem.
172
477-484
1988
Corallina pilulifera
brenda
Garcia-Rodriguez, E.; Ohshiro, T.; Aibara, T.; Izumi, Y.; Littlechild, J.
Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera
J. Biol. Inorg. Chem.
10
275-282
2005
Corallina pilulifera
brenda
Zeiner, R.; van Pee, K.H.; Lingens, F.
Purification and partial characterization of multiple bromoperoxidases from Streptomyces griseus
J. Gen. Microbiol.
134
3141-3149
1988
Streptomyces griseus, Streptomyces griseus Tu6
brenda
Knoch, M.; van Pee, K.H.; Vining, L.C.; Lingens, F.
Purification, properties and immunological detection of a bromoperoxidase-catalase from Streptomyces venezuelae and from a chloramphenicol-nonproducing mutant
J. Gen. Microbiol.
135
2493-2502
1989
Streptomyces venezuelae
brenda
Weng, M.; Pfeifer, O.; Krauss, S.; Lingens, F.; van Pee, K.H.
Purification, characterization and comparison of two non-haem bromoperoxidases from Streptomyces aureofaciens ATCC 10762
J. Gen. Microbiol.
137
2539-2546
1991
Kitasatospora aureofaciens
brenda
Pfeifer, O.; Pelletier, I.; Altenbuchner, J.; van Pee, K.H.
Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762
J. Gen. Microbiol.
138
1123-1131
1992
Kitasatospora aureofaciens (P29715), Kitasatospora aureofaciens
brenda
Hara, I.; Sakurai, T.
Isolation and characterization of vanadium bromoperoxidase from a marine macroalga, Ecklonia stolonifera
J. Inorg. Biochem.
72
23-28
1998
Ecklonia cava subsp. stolonifera
brenda
Rehder, D.; Schulzke, C.; Dau, H.; Meinke, C.; Hanss, J.; Epple, M.
Water and bromide in the active center of vanadate-dependent haloperoxidases
J. Inorg. Biochem.
80
115-121
2000
Ascophyllum nodosum
brenda
Carter, J.N.; Beatty, K.E.; Simpson, M.T.; Butler, A.
Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis
J. Inorg. Biochem.
91
59-69
2002
Corallina officinalis (Q8LLW7)
brenda
Pelletier, I.; Pfeifer, O.; Altenbuchner, J.; van Pee, K.H.
Cloning of a second non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762: sequence analysis, expression in Streptomyces lividans and enzyme purification
Microbiology
140
509-516
1994
Kitasatospora aureofaciens
brenda
Facey, S.J.; Gross, F.; Vining, L.C.; Yang, K.; van Pee, K.H.
Cloning, sequencing and disruption of a bromoperoxidase-catalase gene in Streptomyces venezuelae: evidence that it is not required for chlorination in chloramphenicol biosynthesis
Microbiology
142
657-665
1996
Streptomyces venezuelae
brenda
Almeida, M.; Filipe, S.; Humanes, M.; Maia, M.F.; Melo, R.; Severino, N.; da Silva, J.A.; Frausto da Silva, J.J.; Wever, R.
Vanadium haloperoxidases from brown algae of the Laminariaceae family
Phytochemistry
57
633-642
2001
Saccharina latissima, Laminaria hyperborea
brenda
Ohsawa, N.; Ogata, Y.; Okada, N.; Itoh, N.
Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide
Phytochemistry
58
683-692
2001
Corallina pilulifera
brenda
Ohshiro, T.; Hemrika, W.; Aibara, T.; Wever, R.; Izumi, Y.
Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme
Phytochemistry
60
595-601
2002
Corallina pilulifera
brenda
Coupe, E.E.; Smyth, M.G.; Fosberry, A.P.; Hall, R.M.; Littlechild, J.A.
The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: Cloning, expression, and refolding of the recombinant enzyme
Protein Expr. Purif.
52
265-272
2007
Corallina officinalis
brenda
Kamenarska, Z.; Taniguchi, T.; Ohsawa, N.; Hiraoka, M.; Itoh, N.
A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity
Phytochemistry
68
1358-1366
2007
Kappaphycus alvarezii, Kappaphycus alvarezii Doty
brenda
Littlechild, J.; Garcia Rodriguez, E.; Isupov, M.
Vanadium containing bromoperoxidase--insights into the enzymatic mechanism using X-ray crystallography
J. Inorg. Biochem.
103
617-621
2009
Corallina pilulifera
brenda
Waller, M.P.; Geethalakshmi, K.R.; Buehl, M.
51V NMR chemical shifts from quantum-mechanical/molecular-mechanical models of vanadium bromoperoxidase
J. Phys. Chem. B
112
5813-5823
2008
Ascophyllum nodosum (P81701)
brenda
Geethalakshmi, K.R.; Waller, M.P.; Thiel, W.; Buehl, M.
51V NMR chemical shifts calculated from QM/MM models of peroxo forms of vanadium haloperoxidases
J. Phys. Chem. B
113
4456-4465
2009
Ascophyllum nodosum (P81701)
brenda
Hartung, J.; Bruecher, O.; Hach, D.; Schulz, H.; Vilter, H.; Ruick, G.
Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum
Phytochemistry
69
2826-2830
2008
Ascophyllum nodosum
brenda
Hartung, J.; Dumont, Y.; Greb, M.; Hach, D.; Koehler, F.; Schulz, H.; Casny, M.; Rehder, D.; Vilter, H.
On the reactivity of bromoperoxidase I (Ascophyllum nodosum) in buffered organic media: Formation of carbon bromine bonds
Pure Appl. Chem.
81
1251-1264
2009
Ascophyllum nodosum
-
brenda
Chen, B.; Cai, Z.; Wu, W.; Huang, Y.; Pleiss, J.; Lin, Z.
Morphing activity between structurally similar enzymes: From heme-free bromoperoxidase to lipase
Biochemistry
48
11496-11504
2009
Kitasatospora aureofaciens (P29715), Kitasatospora aureofaciens
brenda
Zhang, B.; Cao, X.; Cheng, X.; Wu, P.; Xiao, T.; Zhang, W.
Efficient purification with high recovery of vanadium bromoperoxidase from Corallina officinalis
Biotechnol. Lett.
33
545-548
2011
Corallina officinalis
brenda
Sandy, M.; Carter-Franklin, J.N.; Martin, J.D.; Butler, A.
Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing
Chem. Commun. (Camb. )
47
12086-12088
2011
Delisea pulchra
brenda
Arnoldsson, K.; Andersson, P.; Haglund, P.
Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization
Environ. Sci. Technol.
46
7239-7244
2012
Corallina officinalis (Q8LLW7)
brenda
Wischang, D.; Hartung, J.; Hahn, T.; Ulber, R.; Stumpf, T.; Fecher-Trost, C.
Vanadate(v)-dependent bromoperoxidase immobilized on magnetic beads as reusable catalyst for oxidative bromination
Green Chem.
13
102-108
2011
Ascophyllum nodosum (P81701)
-
brenda
Johnson, T.; Palenik, B.; Brahamsha, B.
Characterization of a functional vanadium-dependent bromoperoxidase in the marine cyanobacterium synechococcus SP. CC9311
J. Phycol.
47
792-801
2011
Synechococcus sp., Synechococcus sp. (Q0I6Q3), Synechococcus sp. WH8020, Synechococcus sp. CC9311 (Q0I6Q3)
brenda
Baharum, H.; Chu, W.C.; Teo, S.S.; Ng, K.Y.; Rahim, R.A.; Ho, C.L.
Molecular cloning, homology modeling and site-directed mutagenesis of vanadium-dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta)
Phytochemistry
92
49-59
2013
Gracilaria changii (L7YCT6), Gracilaria changii
brenda
Wischang, D.; Hartung, J.
Bromination of phenols in bromoperoxidase-catalyzed oxidations
Tetrahedron
68
9456-9463
2012
Ascophyllum nodosum (P81701)
-
brenda
Weyand, M.; Hecht, H.J.; Vilter, H.; Schomburg, D.
Crystallization and preliminary X-ray analysis of a vanadium-dependent peroxidase from Ascophyllum nodosum
Acta Crystallogr. Sect. D
52
864-865
1996
Ascophyllum nodosum (P81701), Ascophyllum nodosum
brenda
Weyand, M.; Hecht, H.; Kiess, M.; Liaud, M.; Vilter, H.; Schomburg, D.
X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution
J. Mol. Biol.
293
595-611
1999
Ascophyllum nodosum (P81701), Ascophyllum nodosum
brenda
Kaneko, K.; Washio, K.; Umezawa, T.; Matsuda, F.; Morikawa, M.; Okino, T.
cDNA cloning and characterization of vanadium-dependent bromoperoxidases from the red alga Laurencia nipponica
Biosci. Biotechnol. Biochem.
78
1310-1319
2014
Laurencia nipponica
brenda
Matsuda, R.; Ozgur, R.; Higashi, Y.; Takechi, K.; Takano, H.; Takio, S.
Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis
Mar. Biotechnol.
17
199-210
2015
Pyropia yezoensis (A0A0A8J7X1), Pyropia yezoensis TU-1 (A0A0A8J7X1)
brenda
Ranjan, B.; Satyanarayana, T.
Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile expression of the codon-optimized phytase gene in Pichia pastoris and applications
Mol. Biotechnol.
58
137-147
2016
Thermothelomyces thermophilus (V5M269)
brenda