BRENDA - Enzyme Database show
show all sequences of 7.3.2.7

Role of conserved aspartates in the ArsA ATPase

Bhattacharjee, H.; Choudhury, R.; Rosen, B.P.; Biochemistry 47, 7218-7227 (2008)

Data extracted from this reference:

Activating Compound
Activating Compound
Commentary
Organism
Structure
antimonite
activates 10fold the ATPase activity of wild-type ArsA, activation rates of mutants, overview
Escherichia coli
arsenite
activates 3fold the ATPase activity of wild-type ArsA, activation rates of mutants, overview
Escherichia coli
Cloned(Commentary)
Commentary
Organism
expression of His6-tagged wild-type and mutant ArsA in Escherichia coli strain JM109. At high expression level wild-type ArsA is located in the cytosol, mutants D142A, D142E, and D142N are also found predominantly in the cytosol at similar levels as the wild type, but D447A and D447E proteins are found as insoluble aggregates, while only trace amounts of D447N can be observed in the soluble fraction
Escherichia coli
Engineering
Amino acid exchange
Commentary
Organism
D142A
site-directed mutagenesis, the mutant is activated by arsenite and antimonite in a similar amount as the wild-type enzyme
Escherichia coli
D142E
site-directed mutagenesis, the mutant is stronger activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D142N
site-directed mutagenesis, the mutant is activated by arsenite and antimonite in a similar amount as the wild-type enzyme
Escherichia coli
D447A
site-directed mutagenesis, the mutant is less activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D447E
site-directed mutagenesis, the mutant is less activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D447N
site-directed mutagenesis, the near complete insolubility of D447N ArsA precludes its purification and biochemical characterization
Escherichia coli
Inhibitors
Inhibitors
Commentary
Organism
Structure
Trypsin
trypsin cleaves the ArsA at Arg290 to produce a 32 kDa A1 fragment that is catalytically inactive and remains stable to trypsin digestion, and a slightly smaller A2 fragment which is digested rapidly. The trypsin digestion pattern is much different when all three ligands, ATP, Sb(III), and Mg2+, are added together, conditions that produce activated catalysis, overview
Escherichia coli
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
activation kinetics of wild-type and mutant enzymes, overview
Escherichia coli
0.035
-
ATP
recombinant wild-type enzyme
Escherichia coli
0.15
-
ATP
recombinant mutant D142E
Escherichia coli
0.2
-
ATP
recombinant mutant D447E
Escherichia coli
0.6
-
ATP
recombinant mutant D447A
Escherichia coli
0.9
-
ATP
recombinant mutant D142N
Escherichia coli
1.25
-
ATP
recombinant mutant D142A
Escherichia coli
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
-
Escherichia coli
16020
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
required, Asp142 is involved in Mg2+ binding
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + H2O + arsenite/in
Escherichia coli
-
ADP + phosphate + arsenite/out
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
-
gene arsA
-
Purification (Commentary)
Commentary
Organism
recombinant His6-tagged wild-type and mutant ArsA from Escherichia coli strain JM109 to over 95% homogeneity by nickel affinity chromatography
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + H2O + arsenite/in
-
696278
Escherichia coli
ADP + phosphate + arsenite/out
-
-
-
?
ATP + H2O + arsenite/in
Asp142 is involved in Mg2+ binding and also plays a role in signal transduction between the catalytic and activation domains. In contrast, Asp447 is not nearly as critical for Mg2+ binding as Asp142 but appears to be in communication between the metal and catalytic sites
696278
Escherichia coli
ADP + phosphate + arsenite/out
-
-
-
?
Subunits
Subunits
Commentary
Organism
More
ArsA is composed of two homologous halves A1 and A2, each containing a nucleotide binding domain, and a single metalloid binding or activation domain is located at the interface of the two halves of the protein. The metalloid binding domain is connected to the two nucleotide binding domains through two DTAPTGH sequences, one in A1 and the other in A2. The DTAPTGH sequences are proposed to be involved in information communication between the metal and catalytic sites
Escherichia coli
Cofactor
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Activating Compound (protein specific)
Activating Compound
Commentary
Organism
Structure
antimonite
activates 10fold the ATPase activity of wild-type ArsA, activation rates of mutants, overview
Escherichia coli
arsenite
activates 3fold the ATPase activity of wild-type ArsA, activation rates of mutants, overview
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
expression of His6-tagged wild-type and mutant ArsA in Escherichia coli strain JM109. At high expression level wild-type ArsA is located in the cytosol, mutants D142A, D142E, and D142N are also found predominantly in the cytosol at similar levels as the wild type, but D447A and D447E proteins are found as insoluble aggregates, while only trace amounts of D447N can be observed in the soluble fraction
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
D142A
site-directed mutagenesis, the mutant is activated by arsenite and antimonite in a similar amount as the wild-type enzyme
Escherichia coli
D142E
site-directed mutagenesis, the mutant is stronger activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D142N
site-directed mutagenesis, the mutant is activated by arsenite and antimonite in a similar amount as the wild-type enzyme
Escherichia coli
D447A
site-directed mutagenesis, the mutant is less activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D447E
site-directed mutagenesis, the mutant is less activated by arsenite and antimonite compared to the wild-type enzyme
Escherichia coli
D447N
site-directed mutagenesis, the near complete insolubility of D447N ArsA precludes its purification and biochemical characterization
Escherichia coli
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
Trypsin
trypsin cleaves the ArsA at Arg290 to produce a 32 kDa A1 fragment that is catalytically inactive and remains stable to trypsin digestion, and a slightly smaller A2 fragment which is digested rapidly. The trypsin digestion pattern is much different when all three ligands, ATP, Sb(III), and Mg2+, are added together, conditions that produce activated catalysis, overview
Escherichia coli
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
activation kinetics of wild-type and mutant enzymes, overview
Escherichia coli
0.035
-
ATP
recombinant wild-type enzyme
Escherichia coli
0.15
-
ATP
recombinant mutant D142E
Escherichia coli
0.2
-
ATP
recombinant mutant D447E
Escherichia coli
0.6
-
ATP
recombinant mutant D447A
Escherichia coli
0.9
-
ATP
recombinant mutant D142N
Escherichia coli
1.25
-
ATP
recombinant mutant D142A
Escherichia coli
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
-
Escherichia coli
16020
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
required, Asp142 is involved in Mg2+ binding
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + H2O + arsenite/in
Escherichia coli
-
ADP + phosphate + arsenite/out
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant His6-tagged wild-type and mutant ArsA from Escherichia coli strain JM109 to over 95% homogeneity by nickel affinity chromatography
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + H2O + arsenite/in
-
696278
Escherichia coli
ADP + phosphate + arsenite/out
-
-
-
?
ATP + H2O + arsenite/in
Asp142 is involved in Mg2+ binding and also plays a role in signal transduction between the catalytic and activation domains. In contrast, Asp447 is not nearly as critical for Mg2+ binding as Asp142 but appears to be in communication between the metal and catalytic sites
696278
Escherichia coli
ADP + phosphate + arsenite/out
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
More
ArsA is composed of two homologous halves A1 and A2, each containing a nucleotide binding domain, and a single metalloid binding or activation domain is located at the interface of the two halves of the protein. The metalloid binding domain is connected to the two nucleotide binding domains through two DTAPTGH sequences, one in A1 and the other in A2. The DTAPTGH sequences are proposed to be involved in information communication between the metal and catalytic sites
Escherichia coli
Other publictions for EC 7.3.2.7
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
750678
Maldonado-Mendoza
RiArsB and RiMT-11 Two novel ...
Rhizophagus irregularis
Fungal Biol.
122
121-130
2018
-
-
-
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
751204
Shilpa
-
Structural studies of the Ars ...
Escherichia coli
J. Comput. Methods Sci. Eng.
17
227-233
2017
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
733473
Pillai
Mutations in the ArsA ATPase t ...
Escherichia coli
Biometals
27
1263-1275
2014
1
-
1
-
3
-
-
-
-
1
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
3
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
719132
Liu
A 3D localized surface plasmon ...
Escherichia coli
Biosens. Bioelectron.
38
19-26
2012
-
-
1
-
-
-
-
1
-
1
-
1
-
3
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
733712
Sri Lakshmi Sunita
Molecular identification of ar ...
uncultured bacterium
Ecotoxicology
21
202-212
2012
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
719037
Ajees
The ArsD As(III) metallochaper ...
Escherichia coli
Biometals
24
391-399
2011
1
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
715567
Wu
Novel channel enzyme fusion pr ...
Frankia alni, Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv, Salinispora tropica
J. Biol. Chem.
285
40081-40087
2010
-
-
1
-
1
-
-
-
1
-
-
-
-
167
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
5
5
-
-
-
718867
Fu
Role of signature lysines in t ...
Escherichia coli, Escherichia coli JM109
Biochemistry
49
356-364
2010
-
-
1
-
2
-
-
-
-
2
1
4
-
31
-
-
1
-
-
-
-
-
6
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
1
4
-
-
-
1
-
-
-
-
6
2
-
-
-
-
-
-
-
-
-
4
4
-
-
-
718868
Yang
Arsenic binding and transfer b ...
Escherichia coli
Biochemistry
49
3658-3666
2010
2
-
-
-
-
-
-
-
-
-
-
2
-
3
-
-
-
-
-
-
-
-
4
-
1
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
1
1
-
-
-
-
-
-
-
1
1
-
-
-
718876
Ye
The 1.4 A crystal structure of ...
Saccharomyces cerevisiae
Biochemistry
49
5206-5212
2010
1
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
719496
Fu
Biochemical characterization o ...
Alkaliphilus metalliredigens
FEBS Lett.
584
3089-3094
2010
-
-
-
-
3
-
-
-
1
2
-
2
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
2
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
2
2
-
-
-
719612
Castillo
Functional promiscuity of homo ...
Escherichia coli
Int. J. Microbiol.
2010
187373
2010
1
-
1
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
697072
Hemmingsson
ASNA1, an ATPase targeting tai ...
Homo sapiens
Cancer Chemother. Pharmacol.
63
491-499
2009
-
-
1
-
1
-
-
-
-
-
-
3
-
5
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689052
Ruan
Characterization of the metall ...
Escherichia coli
Mol. Microbiol.
67
392-402
2008
-
-
-
-
4
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695985
Lahiri
Functional participation of a ...
Escherichia coli
Biochem. Biophys. Res. Commun.
368
311-317
2008
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696278
Bhattacharjee
Role of conserved aspartates i ...
Escherichia coli
Biochemistry
47
7218-7227
2008
2
-
1
-
6
-
1
7
1
1
-
1
-
2
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
2
-
1
1
-
6
-
-
1
-
7
1
1
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
699223
Chang
Biogeochemical cyclic activity ...
Pseudomonas putida
J. Environ. Sci. (China)
20
1348-1355
2008
-
-
1
-
-
-
-
-
1
-
-
3
-
5
-
-
-
-
-
-
-
-
9
1
-
-
-
-
-
-
-
1
-
-
-
-
-
3
3
-
-
-
-
-
-
-
3
-
-
3
-
-
-
-
-
-
-
-
9
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
686653
Tseng
Caenorhabditis elegans express ...
Caenorhabditis elegans
FEBS J.
274
2566-2572
2007
-
-
1
-
1
-
-
3
-
3
-
1
-
7
-
-
1
-
-
-
1
-
2
-
1
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
3
-
3
-
1
-
-
-
1
-
-
1
-
2
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
687482
Lin
ArsD: an As(III) metallochaper ...
Escherichia coli
J. Bioenerg. Biomembr.
39
453-458
2007
1
-
-
-
-
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687554
Lin
ArsD residues Cys12, Cys13, an ...
Escherichia coli
J. Biol. Chem.
282
16783-16791
2007
-
-
1
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
669530
Ruan
Cys-113 and Cys-422 form a hig ...
Escherichia coli, Escherichia coli plasmid R773
J. Biol. Chem.
281
9925-9934
2006
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689739
Lin
An arsenic metallochaperone fo ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
103
15617-15622
2006
1
-
1
-
-
-
-
-
-
2
-
2
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656054
Zhou
Unisite and multisite catalysi ...
Escherichia coli
J. Biol. Chem.
277
23815-23820
2002
-
-
1
-
4
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
654492
Walmsley
Antimonite regulation of the A ...
Escherichia coli
Biochem. J.
360
589-597
2001
-
-
1
-
-
-
1
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
2
-
-
-
-
1
1
-
-
-
-
1
2
2
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
655949
Bhattacharjee
Structure-function analysis of ...
Escherichia coli
J. Bioenerg. Biomembr.
33
459-468
2001
-
-
1
-
13
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
13
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656017
Jia
Role of the linker region of t ...
Escherichia coli
J. Biol. Chem.
276
29582-29587
2001
-
-
1
-
10
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656019
Zhou
Conformational changes in four ...
Escherichia coli
J. Biol. Chem.
276
30414-30422
2001
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210279
Zhou
Crystallization and preliminar ...
Escherichia coli
Acta Crystallogr. Sect. D
55
921-924
1999
-
-
-
1
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210282
Zhou
Asp45 is a Mg2+ ligand in the ...
Escherichia coli
J. Biol. Chem.
274
13854-13858
1999
2
-
-
-
3
1
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
3
1
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210283
Zhou
Tryptophan fluorescence report ...
Escherichia coli
J. Biol. Chem.
272
19731-19737
1997
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210284
Bruhn
The arsenical resistance opero ...
Escherichia coli
FEMS Microbiol. Lett.
139
149-153
1996
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210285
Silver
Bacterial resistance to toxic ...
Escherichia coli, Staphylococcus aureus, Staphylococcus carnosus
Gene
179
9-19
1996
-
-
1
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210281
Rosen
Mechanism of metalloregulation ...
Escherichia coli
J. Bioenerg. Biomembr.
27
85-91
1995
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210287
Dey
ATP-dependent arsenite transpo ...
Escherichia coli
J. Biol. Chem.
269
25442-25446
1994
2
-
-
-
-
-
2
2
1
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
2
-
2
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210288
Kaur
Plasmid-encoded resistance to ...
Escherichia coli, Staphylococcus aureus, Staphylococcus xylosus
Plasmid
27
29-40
1992
-
-
-
-
6
-
-
-
1
1
-
-
-
3
-
-
-
-
-
-
-
-
5
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
5
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210280
Rosen
Molecular analysis of an anion ...
Escherichia coli
Arch. Biochem. Biophys.
284
381-385
1991
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210286
Owolabi
Differential mRNA stability co ...
Escherichia coli
J. Bacteriol.
172
2367-2371
1990
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-