Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Protein Variants

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 2 of 2
EC Number Protein Variants Commentary Reference
Show all pathways known for 2.3.1.240Display the reaction diagram Show all sequences 2.3.1.240more multimodular separation can lead to only a modest decrease in the overall production of the final polyketide production. PikAI is a multimodular component of the pikromyin polyketide synthase and houses both the loading domain and the first two extension modules, joined by short intraprotein linkers. PikAI can be separated into two proteins at either of these linkers, only when matched pairs of docking domains from a heterologous modular phoslactomycin PKS are used in place of the intraprotein linker. In both cases the yields of pikromycin produced by the Streptomyces venezuelae mutant are 50% of that of a Streptomyces venezuelae strain expressing the native trimodular PikAI. Expression of module 2 as a monomodular protein fused to a heterologous N-terminal docking domain is also observed to give almost a tenfold improvement in the in vivo generation of pikromycin from a synthetic diketide intermediate -, 729589
Show all pathways known for 2.3.1.240Display the reaction diagram Show all sequences 2.3.1.240more PikAI is a multimodular component of the pikromyin polyketide synthase and houses both the loading domain and the first two extension modules, joined by short intraprotein linkers. PikAI can be separated into two proteins at either of these linkers, only when matched pairs of docking domains from a heterologous modular phoslactomycin polyketide synthase are used in place of the intraprotein linker. In both cases the yields of pikromycin produced by the Streptomyces venezuelae mutant are 50% of that of a Streptomyces venezuelae strain expressing the native trimodular PikAI. This observation provides evidence that such separations do not dramatically impact the efficiency of the entire in vivo biosynthetic process. Expression of module 2 as a monomodular protein fused to a heterologous N-terminal docking domain is also observed to give almost a tenfold improvement in the in vivo generation of pikromycin from a synthetic diketide intermediate. These results demonstrate the utility of docking domains to manipulate biosynthetic processes catalyzed by modular polyketide synthases and the quest to generate novel polyketide products -, 729589
Results 1 - 2 of 2