Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 30 > >>
EC Number
General Information
Commentary
Reference
evolution
Arabidopsis thaliana contains 10 MDHs with only one single copy of MDH gene in the chloroplast, which is a plastidlocalized NAD-dependent MDH
evolution
MDH is a ubiquitous enzyme found in prokaryotic and eukaryotic organisms. The enzyme belongs to the superfamily of 2-ketoacid NAD(P)+-dependent dehydrogenases. MDH has diverged into two distinct phylogenetic groups. One group includes cytoplasmic MDH, chloroplast MDH, and MDH from Thermus flavus. The other group includes MDHs that are similar to lactate dehydrogenase (LDH). Structure comparisons, the MDHs are mostly dimeric or tetrameric, overview
evolution
MDH is a ubiquitous enzyme found in prokaryotic and eukaryotic organisms. The enzyme belongs to the superfamily of 2-ketoacid NAD(P)+-dependent dehydrogenases. MDH has diverged into two distinct phylogenetic groups. One group includes cytoplasmic MDH, chloroplast MDH, and MDH from Thermus flavus; the other group includes MDHs that are similar to lactate dehydrogenase (LDH). Structure comparisons, the MDHs are mostly dimeric or tetrameric, overview
evolution
the plasma membrane-associated isozyme belongs belongs to the lactate dehydrogenase/MDH superfamily, MDH type 2 family
evolution
the three different enzyme forms in cytosol, peroxisome and mitochondrion are encoded by three different genes in Saccharomyces cerevisiae, but by only two genes in Yarrowia lipolytica, where the second gene is differentiated into cytosolic and peroxisomal isozymes by alternative splicing, overview
malfunction
a pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. pdNAD-MDH Silencing Results in small and pale green plants, phenotype, overvew. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis
malfunction
absence of either the peroxisomal or the cytosolic form of the MDH does not affect growth rate, irrespective of the carbon source
malfunction
exposure of maize plants to excess concentrations of Zn2+ and Cu2+ in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles
malfunction
knockdown of MDH1 in young human dermal fibroblasts and the IMR90 human fibroblast cell line results in the appearance of significant cellular senescence features, including senescence-associated beta-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16INK4A and p21CIP1 protein levels. The NAD/NADH ratio is decreased by 90% in MDH1 knockdown dermal fibroblasts but only by about 30% in MDH2 knockdown dermal fibroblasts
metabolism
malate dehydrogenase utilizes NAD/NADH as coenzyme to reversibly catalyze the oxidation/reduction of the malate/oxaloacetate. The mitochondrial isoenzyme (mMDH) catalyzes the oxidation of malate, and is the last step of the citric acid cycle, while the cytoplasmic isoenzyme (cMDH) primarily reduces oxaloacetate in the cytoplasm
Results 1 - 10 of 30 > >>