EC Number   |
Title   |
Organism   |
---|
  1.1.1.88 | Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene |
Ruegeria pomeroyi |
  1.1.1.88 | New Crystallographic snapshots of large domain movements in bacterial 3-hydroxy-3-methylglutaryl coenzyme A reductase |
Delftia acidovorans |
  1.1.1.88 | Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-CoA reductase and dipeptidyl peptidase-IV targets in vitro |
Homo sapiens |
  1.1.1.88 | Structural and functional characterization of dynamic oligomerization in Burkholderia cenocepacia HMG-CoA reductase |
Burkholderia cenocepacia |
  1.1.1.88 | Structural and functional characterization of dynamic oligomerization in Burkholderia cenocepacia HMG-CoA reductase |
Burkholderia cenocepacia 32315 |
  1.1.1.88 | 3-Hydroxy 3-methylglutaryl coenzyme A reductase increase is essential for rat muscle differentiation |
Rattus norvegicus |
  1.1.1.88 | 3-hydroxy-3-methylglutaryl coenzyme a reductase1 interacts with NORK and is crucial for nodulation in Medicago truncatula |
Medicago truncatula |
  1.1.1.88 | Active form of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase |
Pseudomonas mevalonii |
  1.1.1.88 | Aminoethylcysteine can replace the function of the essential active site lysine of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase |
Pseudomonas mevalonii |
  1.1.1.88 | Chlamydia trachomatis Infection of Human Trophoblast Alters Estrogen and Progesterone Biosynthesis: an insight into role of infection in pregnancy sequelae |
Homo sapiens |