Refine search

Search Reaction

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 7 of 7
EC Number
Reaction
Commentary
Reference
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
an electron transfer mechanism is not consistent with experimental data of rate constants. The actual mechanism involves more intimate interactions between the electron donor and the substrate in which the latter enters the cobalt coordination sphere
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
chemiosmotic mechanism
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
chemiosmotic mechanism; mechanism; thermodynamics
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
mechanism
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
mechanism; thermodynamics
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
standard potential of the electron acceptor center in -0.57 V
trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
This enzyme allows the common pollutant tetrachloroethene to support bacterial growth and is responsible for disposal of a number of chlorinated hydrocarbons by this organism. The reaction occurs in the reverse direction. The enzyme also reduces trichloroethene to dichloroethene. Although the physiological reductant is unknown, the supply of reductant in some organisms is via reduced menaquinone, itself formed from molecular hydrogen, via EC 1.12.99.3: hydrogen:quinone oxidoreductase. The enzyme contains a corrinoid and two iron-sulfur clusters. Methyl viologen can act as electron donor
-
Results 1 - 7 of 7