Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Application

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 6 of 6
EC Number Application Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86analysis development of a high-throughput cellular bioluminescent reporter screen for inhibitors of the FASII pathway 735449
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86biofuel production Saccharomyces cerevisiae is engineered to produce fatty acid-derived biofuels and chemicals from simple sugars. All three primary genes involved in fatty acid biosynthesis, namely ACC1, FAS1 and FAS2 are overexpressed. Combining this metabolic engineering strategy with terminal converting enzymes (diacylglycerol-acyltransferase,fatty acyl-CoA thioesterase,fatty acyl-CoA reductase, and wax ester synthase for TAG,fatty acid, fatty alcohol and FAEE production, respectively) improves the production levels of all biofuel molecules and chemicals, Saccharomyces cerevisiae provides a compelling platform for a scalable, controllable and economic route to biofuel molecules and chemicals -, 748546
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86medicine potential treatment of infection of humans with Candida parapsilosis 706450
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86synthesis design of a synthetic route consisting of two engineered FAS modules, module 1 optimized to produce octanoyl-CoA, and module 2 to nonreductively elongate this intermediate, yielding 6-heptyl-4-hydroxypyran-2-one 757736
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86synthesis expression of heterologous cytochrome P450 enzyme in combination with their cognate reductase for omega-hydroxylation of octanoic acid in a yeast strain, whose fatty acid synthase is engineered for octanoic acid production, results in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 mg/l. Cytochromes P450 activities are limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid is strongly dependent on the carbon source used, with ethanol being preferred 757575
Display the word mapDisplay the reaction diagram Show all sequences 2.3.1.86synthesis short-chain acyl-CoA producing yeast Fas1 mutant R1834K/Fas2 fatty acid synthase variant is expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae DELTAfas1 DELTAfas2 DELTAfaa2 mutant strain. The synthesized octanoyl-CoA is endogenously converted to 1-octanol up to a titer of 26.0 mg/l in a 72-h fermentation. When octanoic acid is supplied externally to the yeast cells, it can be efficiently converted to 1-octanol. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevents accumulation of octanoic acid and increases 1-octanol titers up to 49.5 mg/l. 1-octanol acts inhibitive before secretion 756246
Results 1 - 6 of 6