1.3.1.14 (S)-dihydroorotate + 2,6-dichlorophenolindophenol - Lactococcus lactis orotate + reduced 2,6-dichlorophenolindophenol - ? 395167 1.3.1.14 (S)-dihydroorotate + acceptor different specific activities with potassium ferricyanide, O2, fumarate and NAD+ as electron acceptors for PyrDI and the holoenzyme Bacillus subtilis orotate + reduced acceptor - ? 258663 1.3.1.14 (S)-dihydroorotate + acceptor fourth step in UMP-biosynthesis Bacillus subtilis orotate + reduced acceptor - ? 258663 1.3.1.14 (S)-dihydroorotate + NAD+ - Lactococcus lactis orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ - Faecalicatena orotica orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ - Faecalicatena orotica orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ - Lactococcus lactis orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ anti-elimination of hydrogen from (S)-dihydroorotate Faecalicatena orotica orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ equilibrium favours direction of orotate reduction Faecalicatena orotica orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ equilibrium favours direction of orotate reduction Faecalicatena orotica orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ equilibrium favours direction of orotate reduction Faecalicatena orotica orotate + NADH + H+ orotate is identical with 4-carboxyuracil r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ mechanism of dehydrogenation, mechanism of electron transfer: L-dihydroorotate transfers a pair of electrons to FMN via iron-sulfur cluster via FAD to NAD+ Lactococcus lactis orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ mechanism of dehydrogenation, mechanism of electron transfer: L-dihydroorotate transfers a pair of electrons to FMN via iron-sulfur cluster via FAD to NAD+ Lactococcus lactis orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Bacillus subtilis orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Lactococcus lactis orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Lactococcus lactis orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Enterococcus faecalis orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Faecalicatena orotica orotate + NADH + H+ - ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ NAD+ as ultimate electron acceptor Faecalicatena orotica orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ substrate is oxidized by NAD+ and oxygen Faecalicatena orotica orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ substrate is oxidized by NAD+ and oxygen Faecalicatena orotica orotate + NADH + H+ lipoic acid is no substitute for orotate ? 258349 1.3.1.14 (S)-dihydroorotate + NAD+ at higher pH values reaction favours direction of dihydroorotate oxidation, whereas at lower pH values direction of orotate reduction is favoured Lactococcus lactis orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ acceptor: NAD+ Enterococcus faecalis orotate + NADH + H+ - r 258349 1.3.1.14 (S)-dihydroorotate + NAD+ mechanism and pH-dependence of reaction Enterococcus faecalis orotate + NADH + H+ - r 258349 1.3.1.14 5-fluorodihydroorotate + NAD+ more active substrate for reverse reaction than orotate Faecalicatena orotica 5-fluoroorotate + NADH + H+ - r 258350 1.3.1.14 dihydroorotate + acceptor acceptor: NAD+ Bacillus subtilis orotate + reduced acceptor - ? 258769 1.3.1.14 dihydroorotate + acceptor acceptor: menadione Bacillus subtilis orotate + reduced acceptor - ? 258769 1.3.1.14 dihydroorotate + acceptor activity measurement in permeabilized Ehrlich ascites tumor cells, acceptor: nitroblue tetrazolium Mus musculus orotate + reduced acceptor - ? 258769 1.3.1.14 dihydroorotate + acceptor acceptor: NAD+ for pyrDa gene product, fumarate for pyrDb gene product Lactococcus lactis orotate + reduced acceptor - ? 258769 1.3.1.14 dihydroorotate + NAD+ - Lactococcus lactis orotate + NADH + H+ - ? 370137 1.3.1.14 dihydroorotate + NAD+ - Faecalicatena orotica orotate + NADH + H+ breakdown of orotate r 370137 1.3.1.14 dihydroorotate + NAD+ fourth step and sole redox reaction in the pyrimidine de novo biosynthetic pathway Lactococcus lactis orotate + NADH + H+ - r 370137 1.3.1.14 dihydroorotate + NAD+ fourth step and sole redox reaction in the pyrimidine de novo biosynthetic pathway Enterococcus faecalis orotate + NADH + H+ - r 370137 1.3.1.14 dihydroorotate + NAD+ fourth step and sole redox reaction in the pyrimidine de novo biosynthetic pathway Faecalicatena orotica orotate + NADH + H+ - r 370137 1.3.1.14 dihydroorotate + NAD+ biosynthesis of pyrimidines Faecalicatena orotica orotate + NADH + H+ - ? 370137 1.3.1.14 dihydroorotate + NAD+ enzyme presumably functions mainly in the metabolic synthesis of pyrimidines Faecalicatena orotica orotate + NADH + H+ - r 370137 1.3.1.14 additional information - Faecalicatena orotica ? - ? 89 1.3.1.14 additional information NAD+ binding domain in the beta subunit of enzyme, Cys-135 plays a catalytic role and Lys-48 is important for orienting the substrate in the active site and is able to interact with FMN Lactococcus lactis ? - ? 89 1.3.1.14 additional information not: uracil, cytosine, 5-methylcytosine, thymine as substrates Faecalicatena orotica ? - ? 89 1.3.1.14 additional information 3-acetylpyridine-NAD+ is a more effective oxidant for dihydroorotate than NAD+, methylene blue can serve as oxidant, but not cytochrome c Faecalicatena orotica ? - ? 89 1.3.1.14 additional information O2, fumarate, and NADP+ do not serve as electron acceptors Lactococcus lactis ? - ? 89