1.14.14.3 (E)-dec-2-enal + FMNH2 + O2 - Aliivibrio fischeri (E)-dec-2-enoate + FMN + H2O + hn - ? 442657 1.14.14.3 (E)-dodec-2-enal + FMNH2 + O2 - Aliivibrio fischeri (E)-dodec-2-enoate + FMN + H2O + hn - ? 442658 1.14.14.3 (E)-oct-2-enal + FMNH2 + O2 - Aliivibrio fischeri (2E)-oct-2-enoate + FMN + H2O + hn - ? 442659 1.14.14.3 (E)-tetradec-2-enal + FMNH2 + O2 - Aliivibrio fischeri (E)-tetradec-2-enoate + FMN + H2O + hn - ? 442660 1.14.14.3 an aldehyde + FMNH2 + O2 - Aliivibrio fischeri a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 beetle luciferin + FMNH2 + O2 - Aliivibrio fischeri ? - ir 386378 1.14.14.3 decanal + FMNH + O2 - Aliivibrio fischeri decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 decanal + FMNH2 + O2 - Aliivibrio fischeri decanoate + FMN + H2O + hn - ? 376653 1.14.14.3 decanal + FMNH2 + O2 - Aliivibrio fischeri decanoic acid + FMN + H2O + hnu - ? 428556 1.14.14.3 decanal + FMNH2 + O2 - Aliivibrio fischeri decanoic acid + FMN + H2O + hv - ? 428557 1.14.14.3 decanal + FMNH2 + O2 - Aliivibrio fischeri decanoic acid + FMN + H2O + hv light emission at 490 nm ? 428557 1.14.14.3 dodecanal + FMNH + O2 - Aliivibrio fischeri dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 dodecanal + FMNH2 + O2 - Aliivibrio fischeri dodecanoate + FMN + H2O + hn - ? 376745 1.14.14.3 dodecanal + FMNH2 + O2 - Aliivibrio fischeri dodecanoic acid + FMN + H2O + hv - ? 428598 1.14.14.3 dodecyl aldehyde + FMNH + O2 - Aliivibrio fischeri ? - ? 409336 1.14.14.3 FMNH + O2 - Aliivibrio fischeri FMN + H2O2 - ? 231416 1.14.14.3 additional information aldehydes of chain-length 8 or more required Aliivibrio fischeri ? - ? 89 1.14.14.3 additional information electrochemical luminescence system using bacterial luciferase, in which one of the substrates, FMNH2, is regenerated by the electrochemical reduction of FMN at a Pt-mesh electrode Aliivibrio fischeri ? - ? 89 1.14.14.3 additional information enzyme accepts unsaturated aldehydes as substrates but light emission drops drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence are much slower, when using unsaturated substrates. As a result the duration of the light emission is doubled Aliivibrio fischeri ? - ? 89 1.14.14.3 n-caprinaldehyde + FMNH2 + O2 - Aliivibrio fischeri n-caprinoate + FMN + H2O + hv - ir 386588 1.14.14.3 n-decanal + FMNH2 + O2 3-step process via H2O2 as intermediate Aliivibrio fischeri n-decanoate + FMN + H2O + hn generation of blue-green light of wavelength 490 nm ir 377241 1.14.14.3 octanal + FMNH + O2 - Aliivibrio fischeri octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 RCHO + FMNH2 + O2 3-step process via H2O2 as intermediate Aliivibrio fischeri RCOOH + FMN + H2O + hn generation of blue-green light of wavelength 490 nm ir 375269 1.14.14.3 RCHO + FMNH2 + O2 - Aliivibrio fischeri RCOOH + FMN + H2O + hnu - ? 394977 1.14.14.3 RCHO + FMNH2 + O2 reduced FMN, i.e. FMNH2, generated by several species of flavin reductases, is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction, direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase, NADPH-specific FMN reductase and luciferase form a complex in vivo, reduction of reductase-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP+ and NADPH as a factor for the regulation of the production of FMNH2 by FRPVh for luciferase bioluminescence, overview Aliivibrio fischeri RCOOH + FMN + H2O + hnu - ? 394977 1.14.14.3 RCHO + FMNH2 + O2 - Aliivibrio fischeri RCOOH + FMN + H2O + hv - ? 427519 1.14.14.3 tetradecanal + FMNH2 + O2 - Aliivibrio fischeri tetradecanoate + FMN + H2O + hn - ? 375327 1.14.14.3 (E)-dec-2-enal + FMNH2 + O2 - Aliivibrio fischeri ATCC 7744 (E)-dec-2-enoate + FMN + H2O + hn - ? 442657 1.14.14.3 decanal + FMNH2 + O2 - Aliivibrio fischeri ATCC 7744 decanoate + FMN + H2O + hn - ? 376653 1.14.14.3 dodecanal + FMNH2 + O2 - Aliivibrio fischeri ATCC 7744 dodecanoate + FMN + H2O + hn - ? 376745 1.14.14.3 additional information enzyme accepts unsaturated aldehydes as substrates but light emission drops drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence are much slower, when using unsaturated substrates. As a result the duration of the light emission is doubled Aliivibrio fischeri ATCC 7744 ? - ? 89 1.14.14.3 tetradecanal + FMNH2 + O2 - Aliivibrio fischeri ATCC 7744 tetradecanoate + FMN + H2O + hn - ? 375327 1.14.14.3 decanal + FMNH + O2 - Bacteria decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 dodecanal + FMNH + O2 - Bacteria dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 octanal + FMNH + O2 - Bacteria octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 coelenterazine + FMNH2 + O2 an imidazolopyrazine derivative Gaussia princeps CO2 + coelenteramide + FMN + light + H2O - ir 386420 1.14.14.3 additional information the Gluc luciferase retains its luminescence output in the stationary phase of growth and exhibits enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature Gaussia princeps ? - ? 89 1.14.14.3 luciferin + O2 + ATP - Luciola mingrelica oxyluciferin + AMP + diphosphate + CO2 + light - ir 231420 1.14.14.3 (E)-dec-2-enal + FMNH2 + O2 - Photobacterium leiognathi (E)-dec-2-enoate + FMN + H2O + hn - ? 442657 1.14.14.3 (E)-dodec-2-enal + FMNH2 + O2 - Photobacterium leiognathi (E)-dodec-2-enoate + FMN + H2O + hn - ? 442658 1.14.14.3 (E)-oct-2-enal + FMNH2 + O2 - Photobacterium leiognathi (2E)-oct-2-enoate + FMN + H2O + hn - ? 442659 1.14.14.3 (E)-tetradec-2-enal + FMNH2 + O2 - Photobacterium leiognathi (E)-tetradec-2-enoate + FMN + H2O + hn - ? 442660 1.14.14.3 an aldehyde + FMNH2 + O2 - Photobacterium leiognathi a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH + O2 - Photobacterium leiognathi decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 decanal + FMNH- + O2 - Photobacterium leiognathi decanoic acid + FMN + H2O + hv - ? 428555 1.14.14.3 decanal + FMNH2 + O2 - Photobacterium leiognathi decanoate + FMN + H2O + hn - ? 376653 1.14.14.3 decanal + FMNH2 + O2 - Photobacterium leiognathi decanoic acid + FMN + H2O + hv light emission at 490 nm ? 428557 1.14.14.3 dodecanal + FMNH + O2 - Photobacterium leiognathi dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 dodecanal + FMNH2 + O2 - Photobacterium leiognathi dodecanoate + FMN + H2O + hn - ? 376745 1.14.14.3 FMNH + O2 - Photobacterium leiognathi FMN + H2O2 - ? 231416 1.14.14.3 additional information LuxG is a NADH:FMN oxidoreductase that supplies FMNH? to luciferase in vivo Photobacterium leiognathi ? - ? 89 1.14.14.3 additional information enzyme accepts unsaturated aldehydes as substrates but light emission drops drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence are much slower, when using unsaturated substrates. As a result the duration of the light emission is doubled Photobacterium leiognathi ? - ? 89 1.14.14.3 octanal + FMNH + O2 - Photobacterium leiognathi octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 tetradecanal + FMNH2 + O2 - Photobacterium leiognathi tetradecanoate + FMN + H2O + hn - ? 375327 1.14.14.3 an aldehyde + FMNH2 + O2 - Photobacterium leiognathi ATCC 25521 a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH- + O2 - Photobacterium leiognathi TH1 decanoic acid + FMN + H2O + hv - ? 428555 1.14.14.3 additional information LuxG is a NADH:FMN oxidoreductase that supplies FMNH? to luciferase in vivo Photobacterium leiognathi TH1 ? - ? 89 1.14.14.3 an aldehyde + FMNH2 + O2 - Photobacterium phosphoreum a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH + O2 - Photobacterium phosphoreum decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 dodecanal + FMNH + O2 - Photobacterium phosphoreum dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 additional information aldehydes of chain-length 8 or more required Photobacterium phosphoreum ? - ? 89 1.14.14.3 octanal + FMNH + O2 - Photobacterium phosphoreum octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 an aldehyde + FMNH2 + O2 - Photobacterium phosphoreum ATCC 11040 a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH + O2 - Photobacterium sp. decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 dodecanal + FMNH + O2 - Photobacterium sp. dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 octanal + FMNH + O2 - Photobacterium sp. octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 an aldehyde + FMNH2 + O2 - Photorhabdus laumondii subsp. laumondii a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 an aldehyde + FMNH2 + O2 - Photorhabdus laumondii subsp. laumondii TT01 a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH + O2 - Photorhabdus luminescens decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 decanal + FMNH2 + O2 - Photorhabdus luminescens decanoic acid + FMN + H2O + hv - ? 428557 1.14.14.3 decanal + FMNH2 + O2 - Photorhabdus luminescens decanoic acid + FMN + H2O + hv light emission at 490 nm ? 428557 1.14.14.3 dodecanal + FMNH + O2 - Photorhabdus luminescens dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 additional information the decay rate of the enzyme is determined by residue Glu175 of the central region of the LuxA subunit, distinction between slow and fast decay luciferases is primarily due to differences in aldehyde affinity and in the decomposition of the luciferase-flavin-oxygen intermediate Photorhabdus luminescens ? - ? 89 1.14.14.3 additional information substrate specificity and quantum yield of mutant E175G as a function of aldehyde chain length Photorhabdus luminescens ? - ? 89 1.14.14.3 myristic aldehyde + FMNH + O2 - Photorhabdus luminescens myristic acid + FMN + H2O + light - ? 231417 1.14.14.3 n-decanal + FMNH2 + O2 3-step process via H2O2 as intermediate Photorhabdus luminescens n-decanoate + FMN + H2O + hn generation of blue-green light of wavelength 490 nm ir 377241 1.14.14.3 octanal + FMNH + O2 - Photorhabdus luminescens octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 RCHO + FMNH2 + O2 3-step process via H2O2 as intermediate Photorhabdus luminescens RCOOH + FMN + H2O + hn generation of blue-green light of wavelength 490 nm ir 375269 1.14.14.3 RCHO + FMNH2 + O2 long-chain aldehydes Photorhabdus luminescens RCOOH + FMN + H2O + hn long-chain fatty acids, bioluminescence reaction ir 375269 1.14.14.3 luciferin + O2 + ATP - Pyrocystis lunula oxyluciferin + AMP + diphosphate + CO2 + light - ir 231420 1.14.14.3 a long-chain aldehyde + FMNH2 + O2 supply of FNH2 can be achieved by 1-benzyl-1,4-dihydronicotinamide instead of a flavin reductase system Vibrio campbellii a long-chain fatty acid + FMN + H2O + hv - ? 462191 1.14.14.3 decanal + FMNH- + O2 - Vibrio campbellii decanoic acid + FMN + H2O + hv - ? 428555 1.14.14.3 additional information LuxG is a NADH:FMN oxidoreductase that supplies FMNH- to luciferase in vivo Vibrio campbellii ? - ? 89 1.14.14.3 RCHO + FMNH2 + O2 - Vibrio campbellii RCOOH + FMN + H2O + hv the enzyme is emitting blue-green light at 490 nm ? 427519 1.14.14.3 decanal + FMNH + O2 - Vibrio cholerae serotype O1 decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 dodecanal + FMNH + O2 - Vibrio cholerae serotype O1 dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 octanal + FMNH + O2 - Vibrio cholerae serotype O1 octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 (E)-dec-2-enal + FMNH2 + O2 - Vibrio harveyi (E)-dec-2-enoate + FMN + H2O + hn - ? 442657 1.14.14.3 (E)-dodec-2-enal + FMNH2 + O2 - Vibrio harveyi (E)-dodec-2-enoate + FMN + H2O + hn - ? 442658 1.14.14.3 (E)-oct-2-enal + FMNH2 + O2 - Vibrio harveyi (2E)-oct-2-enoate + FMN + H2O + hn - ? 442659 1.14.14.3 (E)-tetradec-2-enal + FMNH2 + O2 - Vibrio harveyi (E)-tetradec-2-enoate + FMN + H2O + hn - ? 442660 1.14.14.3 4-N,N-(dimethyl)aminonaphthalene-9-N-(11-aldehydedodecyl)-1,8-dicarboximide + FMNH2 + O2 - Vibrio harveyi ? + FMN + H2O + hnu - ? 442930 1.14.14.3 4-N,N-(dimethyl)aminonaphthalene-9-N-(9-aldehyde-decyl)-1,8-dicarboximide + FMNH2 + O2 - Vibrio harveyi ? + FMN + H2O + hnu - ? 442931 1.14.14.3 4-N-(11-aldehyde-dodecyl)-7-N,N-dimethylsulfonic-2,1,3-benzoxadiazole + FMNH2 + O2 - Vibrio harveyi ? + FMN + H2O + hnu - ? 442932 1.14.14.3 4-N-(9-aldehyde-decyl)-7-N,N-dimethylsulfonic-2,1,3-benzoxadiazole + FMNH2 + O2 - Vibrio harveyi ? + FMN + H2O + hnu - ? 442933 1.14.14.3 a long-chain aldehyde + FMNH2 + O2 - Vibrio harveyi a long-chain fatty acid + FMN + H2O + hv - ? 462191 1.14.14.3 aldehyde + FMNH2 + O2 - Vibrio harveyi ? - ? 408334 1.14.14.3 an aldehyde + FMNH2 + O2 - Vibrio harveyi a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 an aldehyde + FMNH2 + O2 a long chain aliphatic aldehyde as substrate Vibrio harveyi a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 decanal + FMNH + O2 - Vibrio harveyi decanoic acid + FMN + H2O + light - ? 231413 1.14.14.3 decanal + FMNH + O2 - Vibrio harveyi decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoate + FMN + H2O + hn - ? 376653 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoate + FMN + H2O + hn - ir 376653 1.14.14.3 decanal + FMNH2 + O2 formation of a 4a-hydroperoxy-FMN intermediate II Vibrio harveyi decanoate + FMN + H2O + hn - ir 376653 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoate + FMN + H2O + hv - ir 388497 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoic acid + FMN + H2O + hv - ? 428557 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoic acid + FMN + H2O + hv light emission at 490 nm ? 428557 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi decanoate + FMN + H2O + hnu - ? 443447 1.14.14.3 decanal + riboflavin + O2 riboflavin is a very poor substrate for bacterial luciferase Vibrio harveyi ? - ? 409264 1.14.14.3 dodecanal + FMNH + O2 - Vibrio harveyi dodecanoic acid + FMN + H2O + light - ? 231415 1.14.14.3 dodecanal + FMNH + O2 - Vibrio harveyi dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 dodecanal + FMNH2 + O2 - Vibrio harveyi dodecanoate + FMN + H2O + hn - ? 376745 1.14.14.3 dodecanal + FMNH2 + O2 - Vibrio harveyi dodecanoate + FMN + H2O + hn - ir 376745 1.14.14.3 fatty aldehyde + FMNH2 + O2 - Vibrio harveyi fatty acid + FMN + H2O + hn - ir 375125 1.14.14.3 FMNH + O2 - Vibrio harveyi FMN + H2O2 - ? 231416 1.14.14.3 hexachlorethane + e- - Vibrio harveyi tetrachlorethylene + Cl- - ? 231419 1.14.14.3 additional information aldehydes of chain-length 8 or more required Vibrio harveyi ? - ? 89 1.14.14.3 additional information complex formation in a 1:1 molar ratio between monomeric, but not dimeric, NADPH:FMN oxidoreductase FRP and luciferase for direct transfer of cofactor FMNH2 Vibrio harveyi ? - ? 89 1.14.14.3 additional information luminescence pathway, overview Vibrio harveyi ? - ? 89 1.14.14.3 additional information the enzyme plays a role in protection of cells against oxidative stress Vibrio harveyi ? - ? 89 1.14.14.3 additional information substrate specificities of mutant enzymes and wild-type enzyme, overview Vibrio harveyi ? - ? 89 1.14.14.3 additional information Vibrio harveyi NADPH-specific flavin reductase FRP transfers reduced riboflavin-5'-phosphate to luciferase by both free diffusion and direct transfer, resulting inbioluminescence production, FRP:luciferase coupled bioluminescence reaction, overview, increases in oxygen concentration lead to gradual decreases of the peak bioluminescence intensity, Km for FMN, and Km for NADPH of NADPH-specific flavin reductase in the coupled reaction with luciferase Vibrio harveyi ? - ? 89 1.14.14.3 additional information active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase Vibrio harveyi ? - ? 89 1.14.14.3 additional information the 4a-hydroperoxy-4a,5-dihydroFMN intermediate luciferase transforms from a low quantum yield IIx to a high quantum yield IIy fluorescent species on exposure to excitation light Vibrio harveyi ? - ? 89 1.14.14.3 additional information FMNH2 binds to a mobile loop of 29 amino acids in the luciferase protein, loop modeling of ligand-free and -bound enzyme, conformation and dynamics, overview Vibrio harveyi ? - ? 89 1.14.14.3 additional information enzyme accepts unsaturated aldehydes as substrates but light emission drops drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence are much slower, when using unsaturated substrates. As a result the duration of the light emission is doubled Vibrio harveyi ? - ? 89 1.14.14.3 nonanal + FMNH2 + O2 - Vibrio harveyi nonanoate + FMN + H2O + hn - ir 377388 1.14.14.3 octanal + FMNH + O2 - Vibrio harveyi octanoic acid + FMN + H2O + light - ? 231414 1.14.14.3 octanal + FMNH + O2 - Vibrio harveyi octanoic acid + FMN + H2O + light - ir 231414 1.14.14.3 octanal + FMNH2 + O2 - Vibrio harveyi octanoate + FMN + H2O + hn - ir 377406 1.14.14.3 pentachlorethane + e- - Vibrio harveyi trichlorethylene + Cl- - ? 231418 1.14.14.3 RCHO + FMNH2 + O2 - Vibrio harveyi RCOOH + FMN + H2O + hn - ir 375269 1.14.14.3 RCHO + FMNH2 + O2 formation of a 4a-hydroperoxy-FMN intermediate II Vibrio harveyi RCOOH + FMN + H2O + hn - ir 375269 1.14.14.3 RCHO + FMNH2 + O2 formation of a C4a-hydroperoxyflavin intermediate Vibrio harveyi RCOOH + FMN + H2O + hn - ir 375269 1.14.14.3 RCHO + FMNH2 + O2 - Vibrio harveyi RCOOH + FMN + H2O + hnu - ? 394977 1.14.14.3 RCHO + FMNH2 + O2 reduced FMN, i.e. FMNH2, generated by several species of flavin reductases, is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction, direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase, NADPH-specific FMN reductase and luciferase form a complex in vivo, reduction of reductase-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP+ and NADPH as a factor for the regulation of the production of FMNH2 by FRPVh for luciferase bioluminescence, overview Vibrio harveyi RCOOH + FMN + H2O + hnu - ? 394977 1.14.14.3 RCHO + FMNH2 + O2 - Vibrio harveyi RCOOH + FMN + H2O + hv - ? 427519 1.14.14.3 tetradecanal + FMNH2 + O2 - Vibrio harveyi tetradecanoate + FMN + H2O + hn - ? 375327 1.14.14.3 tetradecanal + FMNH2 + O2 - Vibrio harveyi tetradecanoate + FMN + H2O + hn - ir 375327 1.14.14.3 undecanal + FMNH2 + O2 - Vibrio harveyi undecanoate + FMN + H2O + hn - ir 378312 1.14.14.3 (E)-dec-2-enal + FMNH2 + O2 - Vibrio harveyi ATCC 14126 (E)-dec-2-enoate + FMN + H2O + hn - ? 442657 1.14.14.3 decanal + FMNH2 + O2 - Vibrio harveyi ATCC 14126 decanoate + FMN + H2O + hn - ? 376653 1.14.14.3 dodecanal + FMNH2 + O2 - Vibrio harveyi ATCC 14126 dodecanoate + FMN + H2O + hn - ? 376745 1.14.14.3 additional information enzyme accepts unsaturated aldehydes as substrates but light emission drops drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence are much slower, when using unsaturated substrates. As a result the duration of the light emission is doubled Vibrio harveyi ATCC 14126 ? - ? 89 1.14.14.3 tetradecanal + FMNH2 + O2 - Vibrio harveyi ATCC 14126 tetradecanoate + FMN + H2O + hn - ? 375327 1.14.14.3 an aldehyde + FMNH2 + O2 - Vibrio harveyi ATCC BAA1116 a carboxylate + FMN + H2O + hnu - ? 413273 1.14.14.3 RCHO + FMNH2 + O2 - Vibrio harveyi BB120 RCOOH + FMN + H2O + hv - ? 427519 1.14.14.3 decanal + FMNH + O2 - Vibrio sp. decanoic acid + FMN + H2O + light - ir 231413 1.14.14.3 dodecanal + FMNH + O2 - Vibrio sp. dodecanoic acid + FMN + H2O + light - ir 231415 1.14.14.3 octanal + FMNH + O2 - Vibrio sp. octanoic acid + FMN + H2O + light - ir 231414