1.11.1.14 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2 - Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O - ? 260319 1.11.1.14 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2 - Phanerodontia chrysosporium BKM-F-1767 3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O - ? 260319 1.11.1.14 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2 - Phanerodontia chrysosporium BKM-F 1767 3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O - ? 260319 1.11.1.14 1,4-dimethoxybenzene + H2O2 - Bjerkandera sp. ? - ? 260327 1.11.1.14 1,4-dimethoxybenzene + H2O2 - Trametopsis cervina ? - ? 260327 1.11.1.14 1,4-dimethoxybenzene + H2O2 - Bjerkandera sp. BOS55 ? - ? 260327 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxy-phenyl)propane + O2 + H2O2 - Phanerodontia chrysosporium 1-(4'-methoxyphenyl)-1,2-dihydroxyethane + 3,4-diethoxybenzaldehyde - ? 260321 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxy-phenyl)propane + O2 + H2O2 i.e. diarylpropane, lignin-model compound, alpha,beta-cleavage with insertion of a single atom of oxygen from O2 into the alpha-position of the product 1-(4'-methoxyphenyl)-1,2-dihydroxyethane Phanerodontia chrysosporium 1-(4'-methoxyphenyl)-1,2-dihydroxyethane + 3,4-diethoxybenzaldehyde - ? 260321 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Trametes versicolor ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Phanerodontia chrysosporium ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Gloeophyllum sepiarium ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Phlebia radiata ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol Phanerodontia chrysosporium ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Phlebia radiata 79 / ATCC 64658 ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Gloeophyllum sepiarium MTCC-1170 ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol Phanerodontia chrysosporium BKM-F-1767 ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol Phanerodontia chrysosporium BKM-F 1767 ? - ? 370207 1.11.1.14 1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2 - Phanerodontia chrysosporium VKM F-1767 ? - ? 370207 1.11.1.14 1-(4-ethoxy-3-methoxyphenyl)-1,2-propene + O2 + H2O2 olefinic hydroxylation Phanerodontia chrysosporium 1-(4-ethoxy-3-methoxyphenyl)-1,2-dihydroxypropane - ? 260324 1.11.1.14 1-(4-ethoxy-3-methoxyphenyl)propane + O2 + H2O2 - Phanerodontia chrysosporium 1-(4-ethoxy-3-methoxyphenyl)1-hydroxypropane - ? 260323 1.11.1.14 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 - Rhodococcus jostii vanillin + hydroxyacetaldehyde + guaiacol Calpha-Cbeta bond cleavage of substrate takes place. This reaction is inhibited by addition of diaphorase, consistent with a radical mechanism for C-C bond cleavage ? 425255 1.11.1.14 1-phenyl-1,2-ethandiol + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii ? + 2 H2O - ? 461859 1.11.1.14 1-phenyl-1-propanol + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii ? + 2 H2O - ? 461861 1.11.1.14 1-phenyl-2-propanol + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii ? + 2 H2O - ? 461862 1.11.1.14 1-phenylethanol + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii ? + 2 H2O - ? 461866 1.11.1.14 2 2,6-dimethoxyphenol + 2 H2O2 - Bjerkandera sp. coerulignone + 2 H2O - ? 260326 1.11.1.14 2 2,6-dimethoxyphenol + 2 H2O2 - Bjerkandera sp. BOS55 coerulignone + 2 H2O - ? 260326 1.11.1.14 2 guaiacol + H2O2 27% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus 3,3'-dimethoxy-4,4'-biphenylquinone + H2O - ? 440539 1.11.1.14 2 guaiacol + H2O2 27% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus SN9 3,3'-dimethoxy-4,4'-biphenylquinone + H2O - ? 440539 1.11.1.14 2 Mn(II) + 2 H+ + H2O2 activity of EC 1.11.1.13 Rhodococcus jostii 2 Mn(III) + 2 H2O - ? 425344 1.11.1.14 2 veratryl alcohol + H2O2 - Pseudomonas fluorescens 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2 veratryl alcohol + H2O2 - Aspergillus oryzae 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2 veratryl alcohol + H2O2 - Phanerodontia chrysosporium 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2 veratryl alcohol + H2O2 - Aspergillus oryzae CGMCC5992 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2 veratryl alcohol + H2O2 - Pseudomonas fluorescens LiP-RL5 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2 veratryl alcohol + H2O2 - Phanerodontia chrysosporium NK-1 2 veratryl aldehyde + 2 H2O - ? 461458 1.11.1.14 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) + 2 H+ + H2O2 - Rhodococcus jostii oxidized 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) + 2 H2O - ? 461911 1.11.1.14 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2 - Rhodococcus jostii ? + H2O - ? 425359 1.11.1.14 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2 92% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus ? + H2O - ? 425359 1.11.1.14 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2 92% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus SN9 ? + H2O - ? 425359 1.11.1.14 2,4,6-trichlorophenol + H2O2 63% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus ? + H2O - ? 440588 1.11.1.14 2,4,6-trichlorophenol + H2O2 63% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus SN9 ? + H2O - ? 440588 1.11.1.14 2,4-dichlorophenol + H2O2 - Phanerodontia chrysosporium ? - ? 289030 1.11.1.14 2,4-dichlorophenol + H2O2 - Streptomyces viridosporus ? - ? 289030 1.11.1.14 2,4-dichlorophenol + H2O2 - Streptomyces viridosporus T7A / ATCC 39115 ? - ? 289030 1.11.1.14 2,4-dichlorophenol + H2O2 best substrate Streptomyces griseosporeus ? + H2O - ? 440595 1.11.1.14 2,6-dimethoxyphenol + 2 H+ + H2O2 - Rhodococcus jostii oxidized 2,6-dimethoxyphenol + 2 H2O - ? 461464 1.11.1.14 2-chloro-1,4-dimethoxybenzene - Bjerkandera sp. ? - ? 260328 1.11.1.14 2-chloro-1,4-dimethoxybenzene - Bjerkandera sp. BOS55 ? - ? 260328 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Phlebia radiata 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Bjerkandera sp. 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Bjerkandera sp. BOS55 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Phlebia radiata 79 / ATCC 64658 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Phanerodontia chrysosporium BKM-F-1767 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3,4-dimethoxybenzyl alcohol + H2O2 veratryl alcohol Phanerodontia chrysosporium BKM-F 1767 3,4-dimethoxybenzaldehyde + H2O - ? 260320 1.11.1.14 3-methyl-2-benzothiazolinone hydrazone + H2O2 enzyme has several substrate binding sites for 3-methyl-2-benzothiazolinone hydrazone, in addition to low and high affinity binding sites for Mn2+ Bjerkandera adusta ? + H2O - ? 425576 1.11.1.14 4,5-dichlorocatechol + H2O2 50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 1 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation Phanerodontia chrysosporium ? formation of water-insoluble oxidation products ? 408051 1.11.1.14 4-chlorocatechol + H2O2 50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 1 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation Phanerodontia chrysosporium ? formation of water-insoluble oxidation products ? 408069 1.11.1.14 4-chlorophenol + H2O2 45% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus ? + H2O - ? 440847 1.11.1.14 4-methoxymandelic acid + veratryl alcohol - Phanerodontia chrysosporium ? - ? 462083 1.11.1.14 4-methylcatechol + H2O2 50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 3 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation Phanerodontia chrysosporium ? formation of water-insoluble oxidation products ? 395893 1.11.1.14 4-methylthio-2-oxobutanoate + H2O2 only in presence of veratryl alcohol, it possibly reacts with a veratryl alcohol radical to produce ethylene Phanerodontia chrysosporium ? - ? 260322 1.11.1.14 4-phenoxyphenol + H2O2 cleavage of 4-O-5 bond in 4-phenoxyphenol by the catalytic promiscuity of tyrosinase Agaricus bisporus phenol + 1,4-benzoquinone - ? 442951 1.11.1.14 Azure B + 2 H+ + H2O2 dye decolorization, substrate of N246A mutant enzyme Rhodococcus jostii oxidized Azure B + 2 H2O - ? 462284 1.11.1.14 bromophenol blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens ? - ? 376428 1.11.1.14 bromophenol blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens LiP-RL5 ? - ? 376428 1.11.1.14 catechol + H2O2 50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 2 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation Phanerodontia chrysosporium ? formation of water-insoluble oxidation products ? 376455 1.11.1.14 catechol + H2O2 - Phanerodontia chrysosporium ? + 2 H2O - ? 462339 1.11.1.14 coomassie brilliant blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens ? - ? 462375 1.11.1.14 coomassie brilliant blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens LiP-RL5 ? - ? 462375 1.11.1.14 dimethoxyphenol + H2O2 - Phanerodontia chrysosporium ? + 2 H2O - ? 462443 1.11.1.14 Direct Blue GLL dye + H2O2 - Comamonas sp. ? - r 451197 1.11.1.14 Direct Blue GLL dye + H2O2 - Comamonas sp. UVS ? - r 451197 1.11.1.14 ferrocytochrome c + H2O2 - Trametopsis cervina ? - ? 405130 1.11.1.14 fuchsine + H2O2 - Phanerodontia chrysosporium ? - ? 388708 1.11.1.14 guaiacol + H2O2 - Phanerodontia chrysosporium ? + 2 H2O - ? 462553 1.11.1.14 guaiacyl glycerol-beta-guaiacyl ether + H2O2 a dimeric lignin model compound, derivatization with tetramethylsilane is carried out to analyze guaiacyl glycerol-beta-guaiacyl ether, GGE. The catalytic promiscuity of tyrosinase seemed to cleave the Calpha-Cbeta bond in GGE, yielding vanillin and possibly an unstable o-(2-hydroxyethyl)guaiacol radical. The unstable o-(2-hydroxyethyl)guaiacol radical might be further catalyzed to guaiacol and 2-hydroxyacetaldehyde by the tyrosinase, and then guaiacol might be polymerized to an unidentified product Agaricus bisporus vanillin + guaiacol + 2-hydroxyacetaldehyde + H2O - ? 443615 1.11.1.14 guaiacylglycerol-beta-guaiacyl ether + H2O2 GGE, substrate of mutant enzyme N246A Rhodococcus jostii glycerol + guaiacol + 2 H2O - ? 462558 1.11.1.14 humic acid + H2O2 - Gloeophyllum sepiarium ? - ? 414709 1.11.1.14 humic acid + H2O2 - Gloeophyllum sepiarium MTCC-1170 ? - ? 414709 1.11.1.14 humic acid + H2O2 - Streptomyces griseosporeus ? + H2O - ? 426488 1.11.1.14 humic acid + H2O2 - Lenzites betulinus ? + H2O purified enzyme depolymerises humic acid as a model of coal in presence of H2O2 ? 426488 1.11.1.14 humic acid + H2O2 - Streptomyces griseosporeus SN9 ? + H2O - ? 426488 1.11.1.14 humic acid + H2O2 - Lenzites betulinus MTCC-1183 ? + H2O purified enzyme depolymerises humic acid as a model of coal in presence of H2O2 ? 426488 1.11.1.14 L-Dopa + H2O2 - Acinetobacter calcoaceticus ? - ? 397578 1.11.1.14 L-Dopa + H2O2 - Acinetobacter calcoaceticus NCIM 2890 ? - ? 397578 1.11.1.14 lignin + H2O2 substrate is Kraft lignin Rhodococcus jostii ? + H2O - ? 397695 1.11.1.14 lignin + H2O2 substrate Kraft lignin. The highest production of radicals with minimal loss of activity, is obtained by using an enzyme dose of 15 U/g, with a continuous addition of H2O2 during 1 h. Enzymatically generated Mn(III)-malonate is able to activate lignin Bjerkandera sp. ? + H2O - ? 397695 1.11.1.14 lignin + H2O2 substrate Kraft lignin. The highest production of radicals with minimal loss of activity, is obtained by using an enzyme dose of 15 U/g, with a continuous addition of H2O2 during 1 h. Enzymatically generated Mn(III)-malonate is able to activate lignin Bjerkandera sp. R1 ? + H2O - ? 397695 1.11.1.14 lignocellulose + H2O2 substrate is wheat straw lignocellulose Rhodococcus jostii ? + H2O - ? 426620 1.11.1.14 melanin + H2O2 pH 3, 40 °C, 15 IU/ml, and 10 h incubation are the optimal conditions for the degradation of the melanin. The use of the mediator veratryl alcohol is effective to enhance the efficacy of the melanin degradation, with up to 92% decolorization, method evaluation and optimization, overview Phanerodontia chrysosporium ? - ? 462689 1.11.1.14 melanin + H2O2 pH 3, 40 °C, 15 IU/ml, and 10 h incubation are the optimal conditions for the degradation of the melanin. The use of the mediator veratryl alcohol is effective to enhance the efficacy of the melanin degradation, with up to 92% decolorization, method evaluation and optimization, overview Phanerodontia chrysosporium NK-1 ? - ? 462689 1.11.1.14 methylene blue + H2O2 - Bjerkandera adusta ? + H2O - ? 426674 1.11.1.14 methylene blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens ? - ? 462721 1.11.1.14 methylene blue + H2O2 decolorization of a textile dye Pseudomonas fluorescens LiP-RL5 ? - ? 462721 1.11.1.14 mimosine + H2O2 - Acinetobacter calcoaceticus ? - ? 397774 1.11.1.14 mimosine + H2O2 - Acinetobacter calcoaceticus NCIM 2890 ? - ? 397774 1.11.1.14 mitoxantrone + H2O2 low efficiency Phanerodontia chrysosporium hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione + H2O - ? 414873 1.11.1.14 additional information catalyzes non-specifically several oxidations in the alkyl-side-chains of lignin-related compounds, Calpha-Cbeta cleavage in lignin model-compounds Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Trametes versicolor ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Phlebia radiata ? - ? 89 1.11.1.14 additional information of the aryl-CalphaHOH-CbetaHR-CgammaH2OH-type (R being aryl or O-aryl) Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information intradiol cleavage in phenylglycol structures, hydroxylation of benzylic methylene groups, oxidative coupling of phenols, all reactions require H2O2, Calpha-Cbeta cleavage and methylene hydroxylation involve substrate oxygenation, the oxygen atom originates from O2 not H2O2: thus the enzyme acts as oxygenase which requires H2O2 Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information with concomitant insertion of 1 atom of molecular oxygen Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information oxidation of benzyl alcohols to aldehydes or ketones Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information first enzyme connected to oxidative breakdown of the aromatic plant heteropolymer lignin and related xenobiotics Phlebia radiata ? - ? 89 1.11.1.14 additional information bioelectric oxidation of organic substrates by LiP immobilized on graphite electrodes: the enzyme can establish direct (i.e. mediatorless) electronic contact with graphite electrodes. In the case of the so called direct electron transfer reaction, the oxidized enzyme is directly reduced by the electrode to the initial ferriperoxidase state. In the presence of an electron donor other than electrode, the two-electron reduction of enzyme form E1 (containing an oxyferryl iron and a porphyrin pi cation radical) to the initial ferriperoxidase occurs through the intermediate formation of enzyme form II by a sequential one-electron transfer from the electron donor. The formed oxidized electron donor is then electrochemically reduced by the electrode. Different mechanisms for the bioelectrocatalysis of the enzyme depend on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of the enzyme as solid-phase bio(electro)catalyst for decomposition/detection of of recalcitrant aromatic compounds Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information the enzyme shows a higher decolorization rate for monoazo dyes than for thiazin and heterocyclic textile dyes. A high decolorization rate is observed for the azo-dye such as Methyl red 98% and Methyl orange 96% within 24 h, while Direct blue GLL, Direct red 5B, Direct brown MR, Reactive red 2, and Ethylene blue decolorize up to 87%, 79%, 75%, 73%, and 84%, within 48 h, respectively. Direct brown T4LL, Disperse red DK, and Congo red show comparatively less decolorization than the others (63.2%, 63.3%, and 67.9%, within 48 h, respectively) Acinetobacter calcoaceticus ? - ? 89 1.11.1.14 additional information Comamonas sp UVS decolorizes Direct Blue GLL dye (50 mg/l) within 13 h at static condition in yeast extract broth. It can degrade up to 300 mg/l of dye within 55 h. The maximum rate (Vmax) of decolorization is 12.41 mg dye/gcell h with the Michaelis constant (KM) value as 6.20 mg/l. The biodegradation is monitored by UV-Vis, GC-MS and HPLC, no decolorization is found under shaking conditions Comamonas sp. ? - ? 89 1.11.1.14 additional information decolourization of two waterless-soluble aromatic dyes (pyrogallol red and bromopyrogallol red) using lignin peroxidase coupled with glucose oxidase in the medium demonstrates that a higher decolourization percentage is obtained if H2O2 is supplied enzymatically Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information lignin peroxidase is not able to oxidize phenolic compounds efficiently because of inactivation in the absence of veratryl alcohol or related substrates Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information Sulfonated azo dyes such as Methyl orange and Blue-2B are degraded by the purified lignin peroxidase. Degradation of the dyes is confirmed by HPLC, GC-MS, and FTIR spectroscopy. The mainly elected products of Methyl orange are 4-substituted hexanoic acid (m/z = 207), 4-cyclohexenone lactone cation (m/z = 191), and 4-isopropanal-2, 5-cyclohexa-dienone (m/z = 149) and for Blue-2B are 4-(2-hexenoic acid)-2, 5-cyclohexa-diene-one (m/z = 207) and dehydro-acetic acid derivative (m/z = 223), proposed pathway of degradation Brevibacillus laterosporus ? - ? 89 1.11.1.14 additional information the removal mechanism of catechol derivatives seems to be different for each catecholic substrate in terms of substrate consumption and transformation, and of enzyme activity Phanerodontia chrysosporium ? - ? 89 1.11.1.14 additional information enzyme DypB has a significant role in lignin degradation in Rhodococcus jostii RHA1, is able to oxidize both polymeric lignin and a lignin model compound, and appears to have both Mn(II) and lignin oxidation sites Rhodococcus jostii ? - ? 89 1.11.1.14 additional information manganese peroxidase activity is more efficient than lignin peroxidase activity, with activity increasing with increasing concentrations of Mn2+ due to a second metal binding site involved in homotropic substrate Mn2+ activation. The activation of maganese peroxidase is also accompanied by a decrease in both activation energy and substrate Mn2+ affinity Bjerkandera adusta ? - ? 89 1.11.1.14 additional information tyrosinase (EC 1.14.18.1) has a promiscuous activity for oxidizing the lignin-related nonphenolic substrate veratryl alcohol, catalyzing the reaction of heme-containing lignin peroxidase, LiP, EC 1.11.1.14. Tyrosinase exhibits a broad substrate specificity for various phenolic compounds Agaricus bisporus ? - ? 89 1.11.1.14 additional information oxidation degradation reaction of lignin in the corn stover (CS) is catalyzed by LiP from Aspergillus oryzae, optimization of a biodegradation process, overview Aspergillus oryzae ? - - 89 1.11.1.14 additional information selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increases from 38.4% at pH 5.0 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution results from 65.5% beta-O-4' ether bond cleavage, 27.0% Calpha-C1 carbon bond cleavage, and 3.6% Calpha-oxidation as by-product. Enzyme LiPH8 catalyzes the oxidative cleavage of both beta-O-4' ether and C-C bonds in aryl ether dimers and catalyzes breaking of beta-O-4' ether, C-C, and C-H bonds in trimeric lignin model compounds. The distribution of products is pH-dependent. Study catalysis of bond cleavage events in a phenolic lignin dimer by quantitative analysis of product formation during LiPH8-catalyzed degradation of a GGE model compound (GGE-NIMS compound) using nanostructure-initiator mass spectrometry. Low pH conditions drive reaction equilibrium toward the favorable formation of the active cationic radical intermediate. The cationic radical intermediate formed from LiPH8/H2O2-catalyzed 1-electron oxidation of GGE dimer is capable of undergoing a variety of reactions such as side-chain oxidation, C-C bond, and beta-O-4' ether bond cleavage. The intermediates are predicted from a heterolytic bond cleavage reaction mechanism when the first step 1-electron oxidation takes place at lower redox potential-Ring A. The deprotonation of the short-lived cationic radical results in the formation of the phenoxy radical which sequentially cleaved into fragments. Protonation of hydroxyl group under acidic conditions is a key step in bond-cleavage pathways Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information enzyme DypB degrades solvent-obtained fractions of a Kraft lignin. The recombinant mutant enzyme Rh_DypB shows a classical peroxidase activity which is significantly increased by adding Mn2+ ions, kinetic parameters for H2O2, Mn2+, ABTS, and 2,6-DMP are determined. The enzyme shows broad dye-decolorization activity, especially in the presence of Mn2+, oxidizes various aromatic monomers from lignin, and cleaves the guaiacylglycerol-beta-guaiacyl ether (GGE), i.e., the Calpha-Cbeta bond of the dimeric lignin model molecule of beta-O-4 linkages. Under optimized conditions, 2 mM GGE is fully cleaved by recombinant Rh_DypB, generating guaiacol in only 10 min, at a rate of 12.5 micromol/min/mg enzyme. Screening of oxidation activity on monomeric lignin model compounds, overview Rhodococcus jostii ? - - 89 1.11.1.14 additional information lignin peroxidase is an extracellular hemeprotein that is H2O2-dependent, with an unusually high redox potential and low optimum pH. It is capable of oxidizing a variety of reducing substrates, including polymeric substrates. It has the distinction of being able to oxidize methoxylated aromatic rings without a free phenolic group, which generates cation radicals that can react further by a variety of pathways, including ring opening, demethylation, and phenol dimerization. In contrast with laccases, LiP does not require mediators to degrade high redox-potential compounds, but it needs H2O2 to initiate catalysis. Substrate specificity, no or poor activity with ferulic acid, vanillic acid, diaminobenzidine, and HoBT. Purified LiP obtained from immobilized Phanerochaete chrysosporium completely decolorizes bromophenyl blue, bromothymol blue, and bromocresol green, purified enzyme from immobilized Phanerochaete chrysosporium shows increased dye decolorization efficiency compared to the enzyme from non-immobilized Phanerochaete chrysosporium Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information LiP uses H2O2 to catalyze one-electron oxidation of chemicals to free radicals. Hydrogen peroxide oxidizes the heme-LiP by two electrons to LiP I, a ferryl (Fe(IV)) n-porphyrin cation radical of LiP. A substrate molecule can then be oxidized by one electron to a radical, and LiP I is reduced by one electron to LiP II. A subsequent oxidation of another substrate molecule by LiP II returns the LiP to its ferric resting state. The presence of excess H2O2 or slow reduction of LiP II to resting state may lead to the oxidation of LiP II to LiP III, an inactivated enzyme form. This is called LiP cycle. Optimization of enzyme activity measurement and assay condition, overview. The optimum combination of parameters for the maximum is as follows, including pretreatment temperature of 120°C, pretreatment time of 5 min, reaction temperature of 30°C, enzyme amount of 3.75 U/100 ml, 50 mM sodium lactate-hydrochloric acid buffer of pH 1.5, H2O2 concentration of 20 mM and H2O2 amount of 1 ml Aspergillus oryzae ? - - 89 1.11.1.14 additional information partially purified lignin peroxidase is used for the degradation of polyvinyl chloride (PVC) films, a significant reduction in the weight of PVC film is observed (31%), measurement of CO2 as reaction product. FTIR spectra of the enzyme-treated plastic film reveal structural changes in the chemical composition, indicating a specific peak at 2943/cm that correspond to alkenyl C-H stretch. Deterioration on the surface of PVC films is confirmed by scanning electron microscopy tracked through activity assay for the lignin peroxidase Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information the fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. Reaction-diffusion model and solution-phase model, overview. The oxidation of veratryl alcohol (VA) by the enzyme in air at physiological pH 4.5 consumes O2 and produces about 1.1 veratraldehyde per H2O2 supplied. This finding suggests that some VAx02cation radical may escape oxidation at the enzyme's active site, hydrolyzing instead to give benzylic radicals that rapidly add O2. The resulting alpha-hydroxyperoxyl radicals would in turn eliminate the H2O2 precursor HO2 radical, thus accounting for the enhancement in veratraldehyde yield. VA is required for the enzyme to oxidize 4-methoxymandelic acid, which quenches the ESR signal of the VA produced, and veratraldehyde production during these reactions occurs only after all of the 4-methoxymandelic acid has been consumed. Moreover, the rate of 4-methoxymandelic acid oxidation by the enzyme exhibits saturation kinetics as the concentration of VA is increased. Enzymatic oxidations of dye-functionalized beads Phanerodontia chrysosporium ? - - 89 1.11.1.14 additional information the maximal yield of total reducing sugar (Ytrs) by synergistic effect analysis between LiP and three enzyme components of cellulase (endo-beta-1,4-glucanase, exo-beta-1,4-glucanase and beta-glucosidase), oxidation and degradation of lignin, overview Aspergillus oryzae ? - - 89 1.11.1.14 additional information Comamonas sp UVS decolorizes Direct Blue GLL dye (50 mg/l) within 13 h at static condition in yeast extract broth. It can degrade up to 300 mg/l of dye within 55 h. The maximum rate (Vmax) of decolorization is 12.41 mg dye/gcell h with the Michaelis constant (KM) value as 6.20 mg/l. The biodegradation is monitored by UV-Vis, GC-MS and HPLC, no decolorization is found under shaking conditions Comamonas sp. UVS ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Phlebia radiata 79 / ATCC 64658 ? - ? 89 1.11.1.14 additional information the maximal yield of total reducing sugar (Ytrs) by synergistic effect analysis between LiP and three enzyme components of cellulase (endo-beta-1,4-glucanase, exo-beta-1,4-glucanase and beta-glucosidase), oxidation and degradation of lignin, overview Aspergillus oryzae CGMCC5992 ? - - 89 1.11.1.14 additional information oxidation degradation reaction of lignin in the corn stover (CS) is catalyzed by LiP from Aspergillus oryzae, optimization of a biodegradation process, overview Aspergillus oryzae CGMCC5992 ? - - 89 1.11.1.14 additional information LiP uses H2O2 to catalyze one-electron oxidation of chemicals to free radicals. Hydrogen peroxide oxidizes the heme-LiP by two electrons to LiP I, a ferryl (Fe(IV)) n-porphyrin cation radical of LiP. A substrate molecule can then be oxidized by one electron to a radical, and LiP I is reduced by one electron to LiP II. A subsequent oxidation of another substrate molecule by LiP II returns the LiP to its ferric resting state. The presence of excess H2O2 or slow reduction of LiP II to resting state may lead to the oxidation of LiP II to LiP III, an inactivated enzyme form. This is called LiP cycle. Optimization of enzyme activity measurement and assay condition, overview. The optimum combination of parameters for the maximum is as follows, including pretreatment temperature of 120°C, pretreatment time of 5 min, reaction temperature of 30°C, enzyme amount of 3.75 U/100 ml, 50 mM sodium lactate-hydrochloric acid buffer of pH 1.5, H2O2 concentration of 20 mM and H2O2 amount of 1 ml Aspergillus oryzae CGMCC5992 ? - - 89 1.11.1.14 additional information decolourization of two waterless-soluble aromatic dyes (pyrogallol red and bromopyrogallol red) using lignin peroxidase coupled with glucose oxidase in the medium demonstrates that a higher decolourization percentage is obtained if H2O2 is supplied enzymatically Phanerodontia chrysosporium F. F. Lombard / ME-446 / ATCC 43541 ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Phanerodontia chrysosporium BKM-F-1767 ? - ? 89 1.11.1.14 additional information of the aryl-CalphaHOH-CbetaHR-CgammaH2OH-type (R being aryl or O-aryl) Phanerodontia chrysosporium BKM-F-1767 ? - ? 89 1.11.1.14 additional information intradiol cleavage in phenylglycol structures, hydroxylation of benzylic methylene groups, oxidative coupling of phenols, all reactions require H2O2, Calpha-Cbeta cleavage and methylene hydroxylation involve substrate oxygenation, the oxygen atom originates from O2 not H2O2: thus the enzyme acts as oxygenase which requires H2O2 Phanerodontia chrysosporium BKM-F-1767 ? - ? 89 1.11.1.14 additional information with concomitant insertion of 1 atom of molecular oxygen Phanerodontia chrysosporium BKM-F-1767 ? - ? 89 1.11.1.14 additional information oxidation of benzyl alcohols to aldehydes or ketones Phanerodontia chrysosporium BKM-F-1767 ? - ? 89 1.11.1.14 additional information the enzyme shows a higher decolorization rate for monoazo dyes than for thiazin and heterocyclic textile dyes. A high decolorization rate is observed for the azo-dye such as Methyl red 98% and Methyl orange 96% within 24 h, while Direct blue GLL, Direct red 5B, Direct brown MR, Reactive red 2, and Ethylene blue decolorize up to 87%, 79%, 75%, 73%, and 84%, within 48 h, respectively. Direct brown T4LL, Disperse red DK, and Congo red show comparatively less decolorization than the others (63.2%, 63.3%, and 67.9%, within 48 h, respectively) Acinetobacter calcoaceticus NCIM 2890 ? - ? 89 1.11.1.14 additional information oxidation of various phenolic and non-phenolic lignin model-compounds Phanerodontia chrysosporium BKM-F 1767 ? - ? 89 1.11.1.14 additional information partially purified lignin peroxidase is used for the degradation of polyvinyl chloride (PVC) films, a significant reduction in the weight of PVC film is observed (31%), measurement of CO2 as reaction product. FTIR spectra of the enzyme-treated plastic film reveal structural changes in the chemical composition, indicating a specific peak at 2943/cm that correspond to alkenyl C-H stretch. Deterioration on the surface of PVC films is confirmed by scanning electron microscopy tracked through activity assay for the lignin peroxidase Phanerodontia chrysosporium NK-1 ? - - 89 1.11.1.14 n-propanol + H2O2 - Acinetobacter calcoaceticus ? - ? 397920 1.11.1.14 n-propanol + H2O2 - Lentinus sajor-caju propanal + H2O - ? 409940 1.11.1.14 n-propanol + H2O2 - Lentinus sajor-caju MTCC-141 propanal + H2O - ? 409940 1.11.1.14 n-propanol + H2O2 - Comamonas sp. propanaldehyde + H2O - ? 409941 1.11.1.14 n-propanol + H2O2 - Comamonas sp. UVS propanaldehyde + H2O - ? 409941 1.11.1.14 n-propanol + H2O2 - Brevibacillus laterosporus propionaldehyde + H2O - ? 409942 1.11.1.14 nigrosine + H2O2 decolorization of a textile dye Pseudomonas fluorescens ? - ? 462830 1.11.1.14 nigrosine + H2O2 decolorization of a textile dye Pseudomonas fluorescens LiP-RL5 ? - ? 462830 1.11.1.14 non-phenolic substrates + H2O2 e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether Phanerodontia chrysosporium ? - ? 260325 1.11.1.14 non-phenolic substrates + H2O2 e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether Phanerodontia chrysosporium BKM-F-1767 ? - ? 260325 1.11.1.14 non-phenolic substrates + H2O2 e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether Phanerodontia chrysosporium BKM-F 1767 ? - ? 260325 1.11.1.14 o-dianisidine + H2O2 76% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus ? + H2O - ? 289066 1.11.1.14 o-dianisidine + H2O2 76% of the activity with 2,4-dichlorophenol Streptomyces griseosporeus SN9 ? + H2O - ? 289066 1.11.1.14 oxytetracycline + H2O2 LiP shows strong degrading ability Phanerodontia chrysosporium ? - ? 415082 1.11.1.14 oxytetracycline + H2O2 LiP shows strong degrading ability Phanerodontia chrysosporium BKM-F-1767 ? - ? 415082 1.11.1.14 pyrogallol red + H2O2 - Phanerodontia chrysosporium ? - ? 410143 1.11.1.14 Reactive Black 5 + 2 H+ + H2O2 dye decolorization, substrate of N246A mutant enzyme Rhodococcus jostii oxidized Reactive Black 5 + 2 H2O - ? 461676 1.11.1.14 Reactive Black 5 + H2O2 lignin peroxidase can only oxidize Reactive Black 5 in the presence of redox mediators such as veratryl alcohol Phanerodontia chrysosporium ? - ? 389644 1.11.1.14 reduced 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O2 - Trametopsis cervina oxidized 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O - ? 377592 1.11.1.14 remazol brilliant blue R + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii oxidized remazol brilliant blue R + 2 H2O - ? 462997 1.11.1.14 rhodamine B + H2O2 - Phanerodontia chrysosporium ? - ? 389656 1.11.1.14 syringaldehyde + H2O2 - Phanerodontia chrysosporium ? + 2 H2O - ? 463045 1.11.1.14 tetracycline + H2O2 LiP shows strong degrading ability Phanerodontia chrysosporium ? - ? 415359 1.11.1.14 tetracycline + H2O2 LiP shows strong degrading ability Phanerodontia chrysosporium BKM-F-1767 ? - ? 415359 1.11.1.14 Trp + H2O2 - Acinetobacter calcoaceticus ? - ? 398458 1.11.1.14 veratryl alcohol + H2O2 - Trametes versicolor 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Pleurotus ostreatus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes sanguinea 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Comamonas sp. 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes hirsuta 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Agaricus campestris 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Gloeophyllum sepiarium 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus sajor-caju 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Volvariella volvacea 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lenzites betulinus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Loweporus lividus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus sp. 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Pleurotus citrinopileatus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Tropicoporus linteus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Polyporous velutinus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes elegans 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Pleurotus sapidus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Coriolopsis byrsina 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phellinus rimosus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus strigellus 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 ping pong mechanism Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 catalytic activity of lignin peroxidase and partition of veratryl alcohol in sodium bis(2-ethylhexyl)sulfosuccinate /isooctane/toluene/water reverse micelles. Activity depends to a great extent, on the composition of the reverse micelles. Optimum activity occurs at a molar ratio of water to sodium bis(2-ethylhexyl)sulfosuccinate of 11, pH 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP is circa 12 h Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 optimum culture conditions Phanerodontia chrysosporium 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phellinus rimosus SXS 47 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Comamonas sp. UVS 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus sajor-caju MTCC 141 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes hirsuta MTCC 136 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 optimum culture conditions Phanerodontia chrysosporium ATCC 20696 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Gloeophyllum sepiarium MTCC-1170 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes sanguinea MTCC-137 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus strigellus SXS355 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Pleurotus ostreatus MTCC 1803 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes versicolor MTCC 138 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium F. F. Lombard / ME-446 / ATCC 43541 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium BKM-F-1767 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lenzites betulinus MTCC-1183 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Pleurotus sapidus MTCC 1807 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Volvariella volvacea MTCC 957 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus sajor-caju MTCC-141 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes versicolor IBL-04 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Lentinus sp. SXS48 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Polyporous velutinus MTCC 1813 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes elegans MTCC 1812 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Agaricus campestris MTCC 972 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Tropicoporus linteus MTCC 1175 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Trametes sanguinea SXS 43 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium MTCC 787 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Coriolopsis byrsina SXS 16 3,4-dimethoxybenzaldehyde + H2O - ? 378318 1.11.1.14 veratryl alcohol + H2O2 - Acinetobacter calcoaceticus ? - ? 390074 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium ? - ? 390074 1.11.1.14 veratryl alcohol + H2O2 - Trametopsis cervina ? - ? 390074 1.11.1.14 veratryl alcohol + H2O2 - Acinetobacter calcoaceticus NCIM 2890 ? - ? 390074 1.11.1.14 veratryl alcohol + H2O2 - Agaricus bisporus veratraldehyde + H2O - ? 442069 1.11.1.14 veratryl alcohol + H2O2 - Phanerodontia chrysosporium veratraldehyde + H2O - ? 442069 1.11.1.14 veratryl alcohol + H2O2 substrate of N246A mutant enzyme Rhodococcus jostii 3,4-dimethoxybenzoic acid + 2 H2O - ? 463090 1.11.1.14 veratryl alcohol + H2O2 + H+ - Phanerodontia chrysosporium veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ - Streptomyces lavendulae veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ - Pycnoporus sp. (in: Fungi) veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ - Phanerochaete sordida veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor Phanerodontia chrysosporium veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ - Phanerodontia chrysosporium ATCC 24725 veratraldehyde + H2O - ? 382957 1.11.1.14 veratryl alcohol + H2O2 + H+ synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor Phanerodontia chrysosporium ATCC 24725 veratraldehyde + H2O - ? 382957 1.11.1.14 xylene cyanol + H2O2 - Phanerodontia chrysosporium ? - ? 390088