Information on Organism Thermothelomyces thermophilus

TaxTree of Organism Thermothelomyces thermophilus
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(1,4)-beta-D-xylan degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-reticuline biosynthesis
-
-
1,5-anhydrofructose degradation
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
4-hydroxy-2-nonenal detoxification
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anapleurotic synthesis of oxalacetate
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
beta-(1,4)-mannan degradation
-
-
Betalain biosynthesis
-
-
betanidin degradation
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
Biosynthesis of secondary metabolites
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
camalexin biosynthesis
-
-
Caprolactam degradation
-
-
Carbon fixation pathways in prokaryotes
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
d-mannose degradation
-
-
d-xylose degradation
-
-
degradation of hexoses
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
erythromycin D biosynthesis
-
-
Ether lipid metabolism
-
-
Fatty acid degradation
-
-
firefly bioluminescence
-
-
formate oxidation to CO2
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
Glyoxylate and dicarboxylate metabolism
-
-
gossypol biosynthesis
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
Inositol phosphate metabolism
-
-
inulin degradation
-
-
Isoquinoline alkaloid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-ascorbate biosynthesis IV (animals, D-glucuronate pathway)
-
-
L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
-
-
L-ascorbate biosynthesis VIII (engineered pathway)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid metabolism
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
macrolide antibiotic biosynthesis
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methyl indole-3-acetate interconversion
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
myo-inositol biosynthesis
-
-
NAD metabolism
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
neolinustatin bioactivation
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
o-diquinones biosynthesis
-
-
Other glycan degradation
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
partial TCA cycle (obligate autotrophs)
-
-
pectin degradation II
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
Phenylpropanoid biosynthesis
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Photosynthesis
-
-
photosynthesis light reactions
-
-
phytate degradation I
-
-
plasmalogen degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
sesamin biosynthesis
-
-
sophorosyloxydocosanoate deacetylation
-
-
sorbitol biosynthesis II
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
Steroid hormone biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
superoxide radicals degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
Terpenoid backbone biosynthesis
-
-
Thiamine metabolism
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation VI (periplasmic)
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
Tyrosine metabolism
-
-
UDP-alpha-D-glucuronate biosynthesis (from myo-inositol)
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
xanthommatin biosynthesis
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
beta-glucosidase and cellulases are secreted upon growth on cellulose. No secretion when grown on cellobiose
Manually annotated by BRENDA team
additional information
the thermophilic mold Sporotrichum thermophile produces very low titers of phytase extracellularly in both solid state and submerged fermentations
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Thermothelomyces thermophilus)