Information on Organism Macaca fascicularis

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
degradation of sugar alcohols
-
-
xylitol degradation
-
-
D-galactose degradation IV
-
-
Folate biosynthesis
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
L-arabinose degradation II
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
L-glutamine biosynthesis III
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
androgen and estrogen metabolism
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
estradiol biosynthesis I (via estrone)
-
-
mevalonate degradation
-
-
d-xylose degradation
-
-
D-xylose degradation III
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
allopregnanolone biosynthesis
-
-
bile acid biosynthesis, neutral pathway
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
phytosterol biosynthesis (plants)
-
-
Steroid biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
zymosterol biosynthesis
-
-
brassinosteroid biosynthesis I
-
-
brassinosteroid biosynthesis II
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
photosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
Vitamin B6 metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
isoleucine metabolism
-
-
pantothenate biosynthesis
-
-
androgen biosynthesis
-
-
Brassinosteroid biosynthesis
-
-
digitoxigenin biosynthesis
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5Z)-dodecenoate biosynthesis II
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
beta-Alanine metabolism
-
-
Biosynthesis of unsaturated fatty acids
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
jasmonic acid biosynthesis
-
-
methyl ketone biosynthesis (engineered)
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Butanoate metabolism
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
TCA cycle VII (acetate-producers)
-
-
4-aminobutanoate degradation V
-
-
Alanine, aspartate and glutamate metabolism
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
Arginine and proline metabolism
-
-
D-Arginine and D-ornithine metabolism
-
-
glycine metabolism
-
-
L-lysine degradation V
-
-
lysine metabolism
-
-
Penicillin and cephalosporin biosynthesis
-
-
aromatic biogenic amine degradation (bacteria)
-
-
dopamine degradation
-
-
Histidine metabolism
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
melatonin degradation II
-
-
Phenylalanine metabolism
-
-
putrescine degradation III
-
-
tryptophan metabolism
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
folate transformations I
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
Lysine degradation
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
L-phenylalanine degradation V
-
-
tetrahydropteridine recycling
-
-
non-pathway related
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
4-nitrophenol degradation I
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
allantoin degradation
-
-
Caffeine metabolism
-
-
Purine metabolism
-
-
urate conversion to allantoin I
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
o-diquinones biosynthesis
-
-
ethanol degradation IV
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
justicidin B biosynthesis
-
-
luteolin triglucuronide degradation
-
-
matairesinol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
sesamin biosynthesis
-
-
thyroid hormone biosynthesis
-
-
Drug metabolism - other enzymes
-
-
L-tyrosine degradation I
-
-
Styrene degradation
-
-
divinyl ether biosynthesis II
-
-
Linoleic acid metabolism
-
-
anandamide lipoxygenation
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
lipoxin biosynthesis
-
-
resolvin D biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
procollagen hydroxylation and glycosylation
-
-
nicotine degradation IV
-
-
4-nitrophenol degradation II
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
bupropion degradation
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
epoxysqualene biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
heme degradation I
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
glucocorticoid biosynthesis
-
-
Primary bile acid biosynthesis
-
-
vitamin D3 biosynthesis
-
-
vitamin D3 metabolism
-
-
Cyanoamino acid metabolism
-
-
(4R)-carvone biosynthesis
-
-
Limonene and pinene degradation
-
-
Monoterpenoid biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
sophorolipid biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
suberin monomers biosynthesis
-
-
alpha-tocopherol degradation
-
-
ergosterol biosynthesis II
-
-
octane oxidation
mineralocorticoid biosynthesis
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
flexixanthin biosynthesis
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-tyrosine biosynthesis IV
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
rosmarinic acid biosynthesis II
-
-
serotonin and melatonin biosynthesis
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
C20 prostanoid biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
theophylline degradation
-
-
purine metabolism
-
-
Pyrimidine metabolism
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
3,5-dimethoxytoluene biosynthesis
-
-
betaxanthin biosynthesis
-
-
guaiacol biosynthesis
-
-
L-dopa degradation
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
pinitol biosynthesis I
-
-
arsenate detoxification I (mammalian)
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-proline biosynthesis II (from arginine)
-
-
urea cycle
diacylglycerol and triacylglycerol biosynthesis
-
-
carnitine metabolism
-
-
mitochondrial L-carnitine shuttle
-
-
sterol:steryl ester interconversion (yeast)
-
-
geranyl acetate biosynthesis
-
-
volatile esters biosynthesis (during fruit ripening)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
D-Glutamine and D-glutamate metabolism
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
phytochelatins biosynthesis
-
-
protein ubiquitination
-
-
ethylene biosynthesis V (engineered)
-
-
TCA cycle VI (Helicobacter)
-
-
Starch and sucrose metabolism
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
Ascorbate and aldarate metabolism
-
-
saponin biosynthesis II
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
lacto-series glycosphingolipids biosynthesis
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
O-antigen biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
N-Glycan biosynthesis
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
beta-(1,4)-mannan degradation
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation II
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine metabolism
-
-
pyrimidine ribonucleosides degradation
-
-
adenine salvage
-
-
guanine and guanosine salvage II
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
NAD metabolism
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
isoprenoid biosynthesis
-
-
methyl phomopsenoate biosynthesis
-
-
stellatic acid biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
cysteine metabolism
-
-
gluconeogenesis
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
rosmarinic acid biosynthesis I
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
proline metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycolysis
-
-
glycolysis III (from glucose)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
D-sorbitol degradation I
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis IV (plant cytosol)
-
-
adenine and adenosine salvage VI
-
-
pyrimidine deoxyribonucleosides salvage
-
-
purine deoxyribonucleosides salvage
-
-
3-phosphoinositide biosynthesis
-
-
Inositol phosphate metabolism
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
glycerol degradation to butanol
-
-
creatine-phosphate biosynthesis
-
-
Ether lipid metabolism
-
-
phosphatidylethanolamine biosynthesis II
-
-
phosphatidylethanolamine bioynthesis
-
-
Phosphonate and phosphinate metabolism
-
-
plasmalogen biosynthesis
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
choline biosynthesis III
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
palmitoyl ethanolamide biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
phosphatidylcholine biosynthesis II
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
ricinoleate biosynthesis
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
chlorogenic acid degradation
-
-
1,4-dichlorobenzene degradation
-
-
3,4,6-trichlorocatechol degradation
-
-
3,5-dichlorocatechol degradation
-
-
3-chlorocatechol degradation
-
-
3-chlorocatechol degradation I (ortho)
-
-
3-chlorocatechol degradation II (ortho)
-
-
4,5-dichlorocatechol degradation
-
-
4-chlorocatechol degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
Fluorobenzoate degradation
-
-
Toluene degradation
-
-
the visual cycle I (vertebrates)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
Thiamine metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
vitamin B1 metabolism
-
-
L-serine biosynthesis I
-
-
serine metabolism
-
-
2-arachidonoylglycerol biosynthesis
-
-
Sphingolipid metabolism
-
-
sphingosine metabolism
-
-
stigma estolide biosynthesis
-
-
adenosine nucleotides degradation I
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
myo-inositol biosynthesis
phytate degradation I
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
3-phosphoinositide degradation
-
-
glycine betaine biosynthesis
-
-
phosphatidate metabolism, as a signaling molecule
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
Glycosaminoglycan degradation
-
-
heparin degradation
-
-
tRNA processing
-
-
glycogen metabolism
-
-
starch degradation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
alpha-tomatine degradation
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
stachyose degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
degradation of hexoses
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Various types of N-glycan biosynthesis
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
2-methylpropene degradation
-
-
poly-hydroxy fatty acids biosynthesis
-
-
Ac/N-end rule pathway
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
nocardicin A biosynthesis
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
anandamide degradation
-
-
Pantothenate and CoA biosynthesis
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
urate conversion to allantoin II
-
-
urate conversion to allantoin III
-
-
canavanine degradation
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
putrescine biosynthesis III
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
UTP and CTP dephosphorylation II
-
-
heparan sulfate degradation
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
GABA shunt
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
betaxanthin biosynthesis (via dopamine)
-
-
taurine biosynthesis I
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
Rubisco shunt
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
adipate degradation
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
L-isoleucine degradation I
-
-
L-valine degradation I
-
-
oleate beta-oxidation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
chondroitin sulfate degradation I (bacterial)
-
-
dermatan sulfate degradation I (bacterial)
-
-
histidine metabolism
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation III
-
-
L-histidine degradation VI
-
-
allantoin degradation to glyoxylate I
-
-
allantoin degradation to glyoxylate III
-
-
Selenocompound metabolism
-
-
dimethyl sulfide biosynthesis from methionine
-
-
tRNA splicing I
-
-
tRNA splicing II
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
D-xylose degradation I
-
-
chitin biosynthesis
-
-
D-sorbitol biosynthesis I
-
-
GDP-mannose biosynthesis
-
-
starch biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
progesterone biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
D-galactose degradation I (Leloir pathway)
-
-
glucosylglycerol biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch degradation III
-
-
starch degradation V
-
-
streptomycin biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
lanosterol biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
phosphopantothenate biosynthesis I
-
-
canavanine biosynthesis
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
cis-genanyl-CoA degradation
-
-
Fe(II) oxidation
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
arsenite oxidation I (respiratory)
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
in addition to gonadotropes the enzyme is observed in a subpopulation of corticotropes and tyrotropes
Manually annotated by BRENDA team
-
beta1-subunit, alpha2-subunit not present
Manually annotated by BRENDA team
-
mRNAs coding for all subunits high and homogeneously distributed
Manually annotated by BRENDA team
-
low expression of all subunit mRNAs in many of the white matter tracts
Manually annotated by BRENDA team
-
low expression
Manually annotated by BRENDA team
-
a subpopulation of
Manually annotated by BRENDA team
; of chorionic plate and villi
Manually annotated by BRENDA team
; of decidua basalis
Manually annotated by BRENDA team
-
predominant cell type expressing glucokinase
Manually annotated by BRENDA team
expression of the primary form of PGES, mPGES-1
Manually annotated by BRENDA team
-
alpha1 subunit mRNA with restricted distribution in mesencephalic areas, moderate to high levels in the dorsal aspects of the periaqueductal gray, vestibular lateral and medial nuclei, and in prepositus hypoglossal nuclei, low alpha1 and alpha2 mRNA in the dorsal raphe nucleus, pedunculopontine tegmental nucleus, and oculomotor nuclei. Expression for alpha subunits pronounced in pontine nuclei
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
high expression
Manually annotated by BRENDA team
high expression of isoform CHIA-L1, no expression of isoform CHIA
Manually annotated by BRENDA team
-
many of the thalamic nuclei contain the three subunits, alpha1 and beta1 mRNA in both the anterior and posterior ventralis nuclei and in the pulvinar and reticular nuclei, alpha2 subunit mRNA is present at low levels in the pulvinar nucleus and barely detectable in other thalamic nuclei
Manually annotated by BRENDA team
moderate expression, epithelial cells and stromal cells
Manually annotated by BRENDA team
-
in the epithelium from the proximal segment to the distal portion of the vas deferens and ampulla
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Macaca fascicularis)