Information on Organism Cavia porcellus

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
transferred to EC 1.1.5.3
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
transferred to EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
deleted 2008. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
transferred to EC 6.3.5.2
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
degradation of sugar alcohols
-
-
xylitol degradation
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
D-sorbitol degradation I
-
-
Fructose and mannose metabolism
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
L-ascorbate biosynthesis IV
-
-
D-galactose degradation IV
-
-
Folate biosynthesis
-
-
Galactose metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
non-pathway related
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-alpha-D-glucuronate biosynthesis (from UDP-glucose)
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
Butanoate metabolism
-
-
ketogenesis
-
-
ketolysis
-
-
Synthesis and degradation of ketone bodies
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
adipate degradation
-
-
androstenedione degradation
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
Carbon fixation pathways in prokaryotes
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
CO2 fixation in Crenarchaeota
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Lysine degradation
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
oleate beta-oxidation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
Toluene degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
gluconeogenesis
-
-
L-carnitine degradation III
-
-
L-malate degradation II
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
photosynthesis
-
-
L-glutamine biosynthesis III
-
-
glucose degradation (oxidative)
-
-
Glutathione metabolism
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
Primary bile acid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
androgen and estrogen metabolism
-
-
Steroid degradation
-
-
estradiol biosynthesis I (via estrone)
-
-
androgen biosynthesis
-
-
coenzyme B biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
Lysine biosynthesis
-
-
lysine metabolism
-
-
mevalonate degradation
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
arachidonate biosynthesis
-
-
Biotin metabolism
-
-
cis-vaccenate biosynthesis
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
petroselinate biosynthesis
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of mycolate biosynthesis
-
-
Ether lipid metabolism
-
-
plasmalogen biosynthesis
-
-
aminopropanol phosphate biosynthesis II
-
-
L-threonine degradation II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
threonine metabolism
-
-
Arginine and proline metabolism
-
-
progesterone biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
adenosine nucleotides degradation I
-
-
Drug metabolism - other enzymes
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
inosine 5'-phosphate degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
allopregnanolone biosynthesis
-
-
bile acid biosynthesis, neutral pathway
Isoquinoline alkaloid biosynthesis
-
-
morphine biosynthesis
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
phytosterol biosynthesis (plants)
-
-
Steroid biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
zymosterol biosynthesis
-
-
digitoxigenin biosynthesis
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
acetoin degradation
-
-
pyruvate fermentation to (S)-acetoin
-
-
glycine metabolism
-
-
photorespiration
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
alkane oxidation
-
-
aromatic biogenic amine degradation (bacteria)
-
-
beta-Alanine metabolism
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dopamine degradation
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
octane oxidation
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Phenylalanine metabolism
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
retinoate biosynthesis I
-
-
formaldehyde oxidation IV (thiol-independent)
-
-
methanol oxidation to carbon dioxide
-
-
bacterial bioluminescence
-
-
Cutin, suberine and wax biosynthesis
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
sporopollenin precursors biosynthesis
-
-
wax esters biosynthesis I
-
-
Nicotinate and nicotinamide metabolism
-
-
Vitamin B6 metabolism
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
isoleucine metabolism
-
-
pantothenate biosynthesis
-
-
benzene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
heme degradation I
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
jasmonic acid biosynthesis
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
TCA cycle VII (acetate-producers)
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
UMP biosynthesis I
-
-
4-aminobutanoate degradation V
-
-
acetyl-CoA fermentation to butanoate II
-
-
beta-alanine biosynthesis II
-
-
butanoate fermentation
-
-
gallate degradation III (anaerobic)
-
-
glutamate and glutamine metabolism
-
-
L-lysine fermentation to acetate and butanoate
-
-
succinate fermentation to butanoate
-
-
L-leucine degradation I
-
-
Alanine, aspartate and glutamate metabolism
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
L-glutamate degradation I
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
ammonia assimilation cycle I
-
-
L-glutamate biosynthesis IV
-
-
D-Arginine and D-ornithine metabolism
-
-
L-lysine degradation V
-
-
Penicillin and cephalosporin biosynthesis
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
melatonin degradation II
-
-
phenylethylamine degradation I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
beta-alanine biosynthesis I
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
folate transformations I
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
polyamine pathway
-
-
spermine and spermidine degradation I
-
-
beta-alanine biosynthesis IV
-
-
spermine and spermidine degradation III
-
-
NAD metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
ascorbate recycling (cytosolic)
-
-
4-nitrophenol degradation I
-
-
Aminobenzoate degradation
-
-
nitrate reduction II (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitroethane degradation
-
-
allantoin degradation
-
-
Caffeine metabolism
-
-
urate conversion to allantoin I
-
-
nitrate reduction III (dissimilatory)
-
-
nitrate reduction VIII (dissimilatory)
-
-
nitrate reduction VIIIb (dissimilatory)
-
-
nitrate assimilation
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Selenocompound metabolism
-
-
thioredoxin pathway
-
-
sulfate reduction
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV
-
-
Sulfur metabolism
-
-
gliotoxin biosynthesis
-
-
ascorbate glutathione cycle
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
methane metabolism
-
-
cutin biosynthesis
-
-
vernolate biosynthesis III
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
phenol degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
L-tyrosine degradation I
-
-
2-nitrobenzoate degradation I
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tryptophan degradation XII (Geobacillus)
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
divinyl ether biosynthesis II
-
-
Linoleic acid metabolism
-
-
indole degradation to anthranil and anthranilate
-
-
cysteine metabolism
-
-
L-cysteine degradation I
-
-
taurine biosynthesis I
-
-
plastoquinol-9 biosynthesis I
-
-
vitamin E biosynthesis (tocopherols)
-
-
anandamide lipoxygenation
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
lipoxin biosynthesis
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
carnitine metabolism
-
-
gamma-butyrobetaine degradation
-
-
L-carnitine biosynthesis
-
-
procollagen hydroxylation and glycosylation
-
-
nicotine degradation IV
-
-
4-nitrophenol degradation II
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
bupropion degradation
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
epoxysqualene biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
glucocorticoid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
(4R)-carvone biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
sophorolipid biosynthesis
-
-
suberin monomers biosynthesis
-
-
alpha-tocopherol degradation
-
-
ergosterol biosynthesis II
-
-
mineralocorticoid biosynthesis
-
-
vitamin D3 biosynthesis
-
-
vitamin D3 metabolism
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
flexixanthin biosynthesis
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation V
-
-
L-tyrosine biosynthesis IV
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
rosmarinic acid biosynthesis II
-
-
serotonin and melatonin biosynthesis
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
arachidonate biosynthesis I (6-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
icosapentaenoate biosynthesis I (lower eukaryotes)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis III (6-desaturase, mammals)
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
C20 prostanoid biosynthesis
-
-
heme degradation VI
-
-
ethylene biosynthesis III (microbes)
-
-
adenosine nucleotides degradation II
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
theophylline degradation
-
-
arsenate detoxification I (mammalian)
-
-
arsenate detoxification II (glutaredoxin)
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
creatine biosynthesis
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
L-methionine salvage from L-homocysteine
-
-
3,5-dimethoxytoluene biosynthesis
-
-
betaxanthin biosynthesis
-
-
guaiacol biosynthesis
-
-
L-dopa degradation
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
phosphatidylcholine biosynthesis V
-
-
phosphatidylethanolamine bioynthesis
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
beta-alanine betaine biosynthesis
-
-
phosphatidylcholine biosynthesis III
-
-
phosphatidylcholine biosynthesis IV
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
folate polyglutamylation
glycine biosynthesis I
-
-
L-histidine degradation III
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-proline biosynthesis II (from arginine)
-
-
urea cycle
cylindrospermopsin biosynthesis
-
-
guadinomine B biosynthesis
-
-
Biosynthesis of ansamycins
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
chorismate metabolism
-
-
Nitrotoluene degradation
-
-
acetate and ATP formation from acetyl-CoA I
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
oleate biosynthesis III (cyanobacteria)
-
-
palmitoyl ethanolamide biosynthesis
-
-
stigma estolide biosynthesis
-
-
mitochondrial L-carnitine shuttle
-
-
monoacylglycerol metabolism (yeast)
-
-
dimorphecolate biosynthesis
-
-
docosahexaenoate biosynthesis I (lower eukaryotes)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
linoleate biosynthesis I (plants)
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis VII
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
ricinoleate biosynthesis
-
-
ceramide biosynthesis
-
-
ceramide de novo biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
Sphingolipid metabolism
-
-
sterol:steryl ester interconversion (yeast)
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
CDP-diacylglycerol biosynthesis III
-
-
palmitoleate biosynthesis III (cyanobacteria)
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
geranyl acetate biosynthesis
-
-
volatile esters biosynthesis (during fruit ripening)
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
Arabinogalactan biosynthesis - Mycobacterium
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
NAD salvage pathway V (PNC V cycle)
-
-
sphingolipid biosynthesis (yeast)
-
-
D-Glutamine and D-glutamate metabolism
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
protein ubiquitination
-
-
ethylene biosynthesis V (engineered)
-
-
TCA cycle VI (Helicobacter)
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
glycolate and glyoxylate degradation II
-
-
ferrichrome A biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
sucrose biosynthesis III
-
-
saponin biosynthesis II
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
phenolic malonylglucosides biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
homogalacturonan biosynthesis
-
-
gala-series glycosphingolipids biosynthesis
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
globo-series glycosphingolipids biosynthesis
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
ganglio-series glycosphingolipids biosynthesis
-
-
lacto-series glycosphingolipids biosynthesis
-
-
neolacto-series glycosphingolipids biosynthesis
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
O-antigen biosynthesis
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
pyrimidine deoxyribonucleosides degradation
-
-
(aminomethyl)phosphonate degradation
-
-
adenine and adenosine salvage II
-
-
adenine salvage
-
-
glyphosate degradation III
-
-
guanine and guanosine salvage II
-
-
S-methyl-5'-thioadenosine degradation II
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
N-Glycan biosynthesis
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
ethylene biosynthesis I (plants)
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine cycle II
-
-
spermidine biosynthesis I
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
isoprenoid biosynthesis
-
-
plastoquinol-9 biosynthesis II
-
-
ubiquinol-10 biosynthesis (eukaryotic)
-
-
ubiquinol-10 biosynthesis (prokaryotic)
-
-
ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic)
-
-
ubiquinol-7 biosynthesis (eukaryotic)
-
-
ubiquinol-7 biosynthesis (prokaryotic)
-
-
ubiquinol-8 biosynthesis (eukaryotic)
-
-
ubiquinol-8 biosynthesis (prokaryotic)
-
-
ubiquinol-9 biosynthesis (eukaryotic)
-
-
ubiquinol-9 biosynthesis (prokaryotic)
-
-
ubiquinone biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
L-cysteine biosynthesis I
-
-
seleno-amino acid biosynthesis (plants)
-
-
homocysteine and cysteine interconversion
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis II (plants)
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
hydrogen sulfide biosynthesis I
-
-
L-cysteine degradation III
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
rosmarinic acid biosynthesis I
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
beta-alanine degradation I
-
-
GABA shunt
-
-
L-glutamate degradation IV
-
-
nicotine degradation I (pyridine pathway)
-
-
arginine metabolism
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation I
-
-
L-leucine biosynthesis
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-valine biosynthesis
-
-
L-valine degradation I
-
-
Pantothenate and CoA biosynthesis
-
-
Valine, leucine and isoleucine biosynthesis
-
-
glycine biosynthesis III
-
-
L-serine biosynthesis II
-
-
serine metabolism
-
-
L-histidine degradation V
-
-
L-homophenylalanine biosynthesis
-
-
L-arginine degradation II (AST pathway)
-
-
4-aminobutanoate degradation IV
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
adenine and adenosine salvage VI
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD phosphorylation and transhydrogenation
-
-
sulfate activation for sulfonation
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis
-
-
pyridoxal 5'-phosphate salvage I
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
vitamin B6 metabolism
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
Inositol phosphate metabolism
-
-
choline biosynthesis I
-
-
phosphatidylethanolamine biosynthesis II
-
-
ceramide degradation (generic)
-
-
sphingosine metabolism
-
-
phosphatidate metabolism, as a signaling molecule
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis II (mammalian)
-
-
D-myo-inositol (1,3,4)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
CMP phosphorylation
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
ppGpp metabolism
-
-
purine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
UTP and CTP de novo biosynthesis
-
-
thiamine triphosphate metabolism
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine salvage III
-
-
thiamine salvage IV (yeast)
-
-
D-galactose detoxification
-
-
degradation of hexoses
-
-
stachyose degradation
-
-
D-galactose degradation I (Leloir pathway)
-
-
choline biosynthesis III
-
-
phosphatidylcholine biosynthesis II
-
-
Phosphonate and phosphinate metabolism
-
-
mRNA capping I
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
phosphatidylinositol biosynthesis II (eukaryotes)
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phospholipases
-
-
plasmalogen degradation
-
-
pectin degradation I
-
-
pectin degradation II
-
-
L-ascorbate biosynthesis VI (engineered pathway)
-
-
sorbitol biosynthesis II
-
-
chlorogenic acid degradation
-
-
acyl-CoA hydrolysis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
3-phenylpropionate degradation
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
L-serine biosynthesis I
-
-
2-arachidonoylglycerol biosynthesis
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
myo-inositol biosynthesis
-
-
phytate degradation I
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
myo-inositol biosynthesis
-
-
3-phosphoinositide degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
glycine betaine biosynthesis
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
Glycosaminoglycan degradation
-
-
chlorpyrifos degradation
-
-
methyl parathion degradation
-
-
paraoxon degradation
-
-
parathion degradation
-
-
tRNA processing
-
-
starch degradation
-
-
starch degradation I
-
-
starch degradation II
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
trehalose degradation VI (periplasmic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Various types of N-glycan biosynthesis
-
-
starch degradation IV
-
-
trehalose biosynthesis V
-
-
fructan degradation
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
lactose degradation III
-
-
complex N-linked glycan biosynthesis (plants)
-
-
amygdalin and prunasin degradation
-
-
tea aroma glycosidic precursor bioactivation
-
-
DIMBOA-glucoside activation
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
poly-hydroxy fatty acids biosynthesis
-
-
alliin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
Ac/N-end rule pathway
-
-
glutathione degradation (DUG pathway - yeast)
-
-
muropeptide degradation
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
5-oxo-L-proline metabolism
-
-
glutamate removal from folates
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
3-hydroxyquinaldate biosynthesis
-
-
quinoxaline-2-carboxylate biosynthesis
-
-
cyanide detoxification II
-
-
anandamide degradation
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation VI
-
-
canavanine degradation
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
putrescine biosynthesis III
-
-
protein citrullination
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
pyrimidine ribonucleosides degradation
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
reductive acetyl coenzyme A pathway
-
-
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis I
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
erythro-tetrahydrobiopterin biosynthesis II
-
-
preQ0 biosynthesis
-
-
tetrahydromonapterin biosynthesis
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
base-degraded thiamine salvage
-
-
UTP and CTP dephosphorylation II
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
oxidative phosphorylation
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
oxalate degradation V
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
superpathway of ornithine degradation
-
-
aminopropylcadaverine biosynthesis
-
-
bisucaberin biosynthesis
-
-
cadaverine biosynthesis
-
-
desferrioxamine B biosynthesis
-
-
desferrioxamine E biosynthesis
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
lupanine biosynthesis
-
-
histamine biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
methanofuran biosynthesis
-
-
octopamine biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
spermidine biosynthesis III
-
-
spermine biosynthesis
-
-
methylgallate degradation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
syringate degradation
-
-
glycine biosynthesis IV
-
-
L-threonine degradation IV
-
-
metabolism of amino sugars and derivatives
-
-
N-acetylneuraminate and N-acetylmannosamine degradation I
-
-
N-acetylneuraminate and N-acetylmannosamine degradation II
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fermentation to 2-methylbutanoate
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
ethylmalonyl-CoA pathway
-
-
chondroitin sulfate degradation I (bacterial)
-
-
heparin degradation
-
-
heparan sulfate degradation
-
-
dermatan sulfate degradation I (bacterial)
-
-
L-ornithine degradation I (L-proline biosynthesis)
-
-
L-threonine degradation V
-
-
canavanine biosynthesis
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
inosine-5'-phosphate biosynthesis III
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
selenocysteine biosynthesis
-
-
heme b biosynthesis I (aerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
colanic acid building blocks biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
-
-
poly(glycerol phosphate) wall teichoic acid biosynthesis
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis I (B. subtilis)
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis II (S. aureus)
-
-
UDP-N-acetyl-alpha-D-mannosaminouronate biosynthesis
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
degradation of pentoses
-
-
GDP-mannose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
mannitol biosynthesis
-
-
mannitol degradation II
-
-
chitin biosynthesis
-
-
D-sorbitol biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
brassinosteroid biosynthesis I
-
-
brassinosteroid biosynthesis II
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
eumelanin biosynthesis
-
-
glucosylglycerol biosynthesis
-
-
streptomycin biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
Rapoport-Luebering glycolytic shunt
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
lanosterol biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
lupulone and humulone biosynthesis
-
-
4-oxopentanoate degradation
-
-
cannabinoid biosynthesis
-
-
alkane biosynthesis II
-
-
linoleate biosynthesis II (animals)
-
-
long-chain fatty acid activation
-
-
oleate biosynthesis I (plants)
-
-
wax esters biosynthesis II
-
-
bile acids degradation
-
-
Secondary bile acid biosynthesis
-
-
2-methylcitrate cycle I
-
-
2-methylcitrate cycle II
-
-
alkane biosynthesis I
-
-
heptadecane biosynthesis
-
-
lipoate biosynthesis
-
-
anaerobic aromatic compound degradation (Thauera aromatica)
-
-
benzoate biosynthesis I (CoA-dependent, beta-oxidative)
-
-
benzoate degradation II (aerobic and anaerobic)
-
-
salicortin biosynthesis
-
-
tetrahydroxyxanthone biosynthesis (from benzoate)
-
-
L-asparagine biosynthesis II
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
phosphopantothenate biosynthesis I
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
vancomycin resistance II
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
Aflatoxin biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
jadomycin biosynthesis
-
-
propanoyl CoA degradation I
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
ammonia oxidation IV (autotrophic ammonia oxidizers)
-
-
formate to nitrite electron transfer
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
Photosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
abdominal skin
Manually annotated by BRENDA team
-
grown in the abdomen of swiss white mice
Manually annotated by BRENDA team
-
AC1 preferentially expressed in sino-atrial node cells, present as mRNA and as protein, AC5 present, AC8 absent
Manually annotated by BRENDA team
-
smooth muscle
Manually annotated by BRENDA team
-
isozyme gamma
Manually annotated by BRENDA team
-
low activity
Manually annotated by BRENDA team
-
isoenzyme specific for mucus of colon. Human mucus CA differs from cytosolic CAI and CAII, membrane-bound CAIV, and the secreted CAVI of saliva
Manually annotated by BRENDA team
-
inner ear
Manually annotated by BRENDA team
-
endometrial cells. Enzyme level increases during a serum depletion-induced quiescence, decreases when cells enter the g1 phase after serum stimulation, and is restored during the S and G2/M phases
Manually annotated by BRENDA team
-
isozyme gamma
Manually annotated by BRENDA team
-
isozyme endothelial lipase
Manually annotated by BRENDA team
-
several isozymes
Manually annotated by BRENDA team
-
isozyme beta
Manually annotated by BRENDA team
-
glial network
Manually annotated by BRENDA team
-
low activity
Manually annotated by BRENDA team
-
membraneous lateral wall, stria vascularis, spiral ligament, spiral prominence, outer sulcus
Manually annotated by BRENDA team
-
isozyme gamma
Manually annotated by BRENDA team
-
strong pChAT signal in intrinsic primary afferent neurons, low immunoreactivity for cChAT
Manually annotated by BRENDA team
-
myenteric neuron, isozyme beta in submucosal ganglia of neurons, isozymes gamma, eta, and theta are present in intrinsic primary afferent neurons, but not in other myenteric neurons, low expression of isozyme alpha, isozyme epsilon
Manually annotated by BRENDA team
-
type I neurons are generated during early corticogenesis, whereas type II cells are produced over a wide prenatal time window persisting until birth. Type II nitrinergic neurons may undergo a period of development/differentiation, for over 1 month, before being NADPH-diaphorase reactive
Manually annotated by BRENDA team
-
preganglionic
Manually annotated by BRENDA team
-
small but detectable amount of 3alphaHST activity
Manually annotated by BRENDA team
-
smooth muscle cells
Manually annotated by BRENDA team
additional information