Any feedback?
Please rate this page
(organism.php)
(0/150)

BRENDA support

Information on Organism Allium cepa

TaxTree of Organism Allium cepa
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(3R)-linalool biosynthesis
-
-
(3S)-linalool biosynthesis
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5R)-carbapenem carboxylate biosynthesis
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(aminomethyl)phosphonate degradation
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
(Z)-butanethial-S-oxide biosynthesis
-
-
(Z)-phenylmethanethial S-oxide biosynthesis
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
15-epi-lipoxin biosynthesis
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-nitrotoluene degradation
-
-
3,5-dimethoxytoluene biosynthesis
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-dehydroquinate biosynthesis I
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
3-phosphoinositide degradation
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
4-aminobutanoate degradation V
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-nitrophenol degradation II
-
-
5'-deoxyadenosine degradation II
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
abscisic acid biosynthesis
-
-
acetaldehyde biosynthesis I
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine deoxyribonucleotides de novo biosynthesis I
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
adlupulone and adhumulone biosynthesis
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alkane oxidation
-
-
all-trans-farnesol biosynthesis
-
-
alliin metabolism
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
aminopropylcadaverine biosynthesis
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anandamide lipoxygenation
-
-
anapleurotic synthesis of oxalacetate
-
-
androgen and estrogen metabolism
-
-
androstenedione degradation I (aerobic)
-
-
androstenedione degradation II (anaerobic)
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
anthocyanidin modification (Arabidopsis)
-
-
anthocyanin biosynthesis
-
-
Anthocyanin biosynthesis
-
-
anthocyanin biosynthesis (delphinidin 3-O-glucoside)
-
-
anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine dependent acid resistance
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
aromatic polyketides biosynthesis
-
-
arsenate detoxification I
-
-
arsenic detoxification (mammals)
-
-
arsenite to oxygen electron transfer
-
-
arsenite to oxygen electron transfer (via azurin)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate glutathione cycle
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspartate and asparagine metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
assimilatory sulfate reduction IV
-
-
ATP biosynthesis
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
avenanthramide biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
beta-alanine biosynthesis I
-
-
beta-alanine biosynthesis IV
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
biotin biosynthesis
-
-
biotin-carboxyl carrier protein assembly
-
-
bisabolene biosynthesis (engineered)
-
-
Bisphenol degradation
-
-
bisucaberin biosynthesis
-
-
brassicicene C biosynthesis
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
cadaverine biosynthesis
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Caprolactam degradation
-
-
capsaicin biosynthesis
-
-
capsiconiate biosynthesis
-
-
Carbapenem biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
Carotenoid biosynthesis
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catecholamine biosynthesis
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
cellulose biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid biosynthesis I
-
-
cholesterol biosynthesis
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
choline biosynthesis III
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
cinnamoyl-CoA biosynthesis
-
-
cis-geranyl-CoA degradation
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CMP phosphorylation
-
-
CMP-3-deoxy-D-manno-octulosonate biosynthesis
-
-
CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis
-
-
CMP-KDO biosynthesis
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
colupulone and cohumulone biosynthesis
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
coumarins biosynthesis (engineered)
-
-
creatine phosphate biosynthesis
-
-
curcuminoid biosynthesis
-
-
cyanate degradation
cyanide degradation
-
-
cyanide detoxification I
-
-
Cyanoamino acid metabolism
-
-
cyclic electron flow
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-cycloserine biosynthesis
-
-
d-mannose degradation
-
-
D-mannose degradation I
-
-
D-mannose degradation II
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
D-myo-inositol-5-phosphate metabolism
-
-
D-sorbitol biosynthesis I
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
daphnetin modification
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
desferrioxamine B biosynthesis
-
-
desferrioxamine E biosynthesis
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
diethylphosphate degradation
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
Diterpenoid biosynthesis
-
-
divinyl ether biosynthesis II
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
dTMP de novo biosynthesis (mitochondrial)
-
-
dZTP biosynthesis
-
-
echinatin biosynthesis
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ephedrine biosynthesis
-
-
epoxysqualene biosynthesis
-
-
ergothioneine biosynthesis I (bacteria)
-
-
Escherichia coli serotype O:127 O antigen biosynthesis
-
-
Escherichia coli serotype O:86 O antigen biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis I (plants)
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
ethiin metabolism
-
-
extended VTC2 cycle
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation III (unsaturated, odd number)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
ferrichrome A biosynthesis
-
-
firefly bioluminescence
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
Flavone and flavonol biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
flavonol acylglucoside biosynthesis I - kaempferol derivatives
-
-
flavonol acylglucoside biosynthesis III - quercetin derivatives
-
-
flavonol biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Folate biosynthesis
-
-
folate polyglutamylation
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
fructan biosynthesis
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
fusicoccin A biosynthesis
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-L-galactose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
geraniol and geranial biosynthesis
-
-
Geraniol degradation
-
-
geranyl diphosphate biosynthesis
-
-
geranylgeranyl diphosphate biosynthesis
-
-
gibberellin biosynthesis III (early C-13 hydroxylation)
-
-
gibberellin inactivation I (2beta-hydroxylation)
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutathione biosynthesis
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation I
-
-
glycerol degradation to butanol
-
-
glycerol-3-phosphate shuttle
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
Glycerolipid metabolism
-
-
glycerophosphodiester degradation
-
-
Glycerophospholipid metabolism
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
glyphosate degradation III
-
-
gossypol biosynthesis
-
-
guaiacol biosynthesis
-
-
guanine and guanosine salvage I
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
homoglutathione biosynthesis
-
-
hypoglycin biosynthesis
-
-
hypotaurine degradation
-
-
IAA biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
inulin degradation
-
-
ipsdienol biosynthesis
-
-
Isoflavonoid biosynthesis
-
-
isoflavonoid biosynthesis I
-
-
isoflavonoid biosynthesis II
-
-
isoprene biosynthesis II (engineered)
-
-
isoprenoid biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
jadomycin biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
kaempferol gentiobioside biosynthesis
-
-
kaempferol glycoside biosynthesis (Arabidopsis)
-
-
kaempferol triglucoside biosynthesis
-
-
ketogenesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaea)
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
L-arginine degradation V (arginine deiminase pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-ascorbate biosynthesis I (plants, L-galactose pathway)
-
-
L-ascorbate biosynthesis II (plants, L-gulose pathway)
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-asparagine biosynthesis I
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-carnitine degradation II
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis IX (Trichomonas vaginalis)
-
-
L-cysteine biosynthesis VI (reverse transsulfuration)
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-dopa degradation I (mammalian)
-
-
L-glutamate biosynthesis IV
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine degradation II
-
-
L-histidine degradation V
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
L-malate degradation II
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine degradation I (to L-homocysteine)
-
-
L-methionine degradation III
-
-
L-methionine salvage from L-homocysteine
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline degradation I
-
-
L-serine biosynthesis I
-
-
L-serine biosynthesis II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation II
-
-
lacinilene C biosynthesis
-
-
lactate fermentation
-
-
lactose degradation II
-
-
lactose degradation III
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
leukotriene biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
linalool biosynthesis I
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid metabolism
-
-
Lipopolysaccharide biosynthesis
-
-
lipoxin biosynthesis
-
-
lotaustralin degradation
-
-
lupanine biosynthesis
-
-
lupulone and humulone biosynthesis
-
-
luteolin biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
manganese oxidation I
-
-
mannitol biosynthesis
-
-
mannitol cycle
-
-
mannitol degradation I
-
-
mannitol degradation II
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melatonin degradation II
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methiin metabolism
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl phomopsenoate biosynthesis
-
-
methylaspartate cycle
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
methylglyoxal degradation VIII
-
-
methylsalicylate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial L-carnitine shuttle
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
monoacylglycerol metabolism (yeast)
-
-
Monobactam biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
morphine biosynthesis
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
mupirocin biosynthesis
-
-
mycolate biosynthesis
-
-
mycothiol biosynthesis
-
-
myo-inositol biosynthesis
myricetin gentiobioside biosynthesis
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
NAD biosynthesis III (from nicotinamide)
-
-
NAD metabolism
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD salvage (plants)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
Naphthalene degradation
-
-
naringenin biosynthesis (engineered)
-
-
neolinustatin bioactivation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nepetalactone biosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation I (pyridine pathway)
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
nitrogen remobilization from senescing leaves
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen biosynthesis
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
o-diquinones biosynthesis
-
-
octane oxidation
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
oleate beta-oxidation (reductase-dependent, yeast)
-
-
oleate beta-oxidation (thioesterase-dependent, yeast)
-
-
oleate biosynthesis II (animals and fungi)
-
-
One carbon pool by folate
-
-
ophiobolin F biosynthesis
-
-
ophthalmate biosynthesis
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
oxalate degradation IV
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitoleate biosynthesis IV (fungi and animals)
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
paspaline biosynthesis
-
-
pectin degradation I
-
-
pectin degradation II
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
phenol degradation
-
-
phenolic malonylglucosides biosynthesis
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylethylamine degradation I
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
phenylpropanoids methylation (ice plant)
-
-
pheomelanin biosynthesis
-
-
phloridzin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis I
-
-
phosphatidylcholine biosynthesis II
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
phosphatidylethanolamine biosynthesis II
-
-
phosphatidylethanolamine bioynthesis
-
-
phosphatidylinositol biosynthesis I (bacteria)
-
-
phosphatidylinositol biosynthesis II (eukaryotes)
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Phosphonate and phosphinate metabolism
-
-
phosphopantothenate biosynthesis I
-
-
photorespiration
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytochelatins biosynthesis
-
-
phytochromobilin biosynthesis
-
-
phytol degradation
-
-
pinobanksin biosynthesis
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
platensimycin biosynthesis
-
-
plaunotol biosynthesis
-
-
poly-hydroxy fatty acids biosynthesis
-
-
polyamine pathway
-
-
polyhydroxydecanoate biosynthesis
-
-
polyphosphate metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
ppGpp metabolism
-
-
Primary bile acid biosynthesis
-
-
proanthocyanidins biosynthesis from flavanols
-
-
procollagen hydroxylation and glycosylation
-
-
proline metabolism
-
-
proline to cytochrome bo oxidase electron transfer
-
-
propanethial S-oxide biosynthesis
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
protein ubiquitination
-
-
PRPP biosynthesis
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine deoxyribonucleosides salvage
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation II (anaerobic)
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
putrescine biosynthesis III
-
-
putrescine degradation I
-
-
putrescine degradation III
-
-
putrescine degradation IV
-
-
putrescine degradation V
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate fermentation to (R)-lactate
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
quercetin gentiotetraside biosynthesis
-
-
quercetin glucoside biosynthesis (Allium)
-
-
quercetin glycoside biosynthesis (Arabidopsis)
-
-
quercetin triglucoside biosynthesis
-
-
reactive oxygen species degradation
-
-
reductive glycine pathway
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
resveratrol biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
ricinoleate biosynthesis
-
-
rose anthocyanin biosynthesis II (via cyanidin 3-O-beta-D-glucoside)
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Rubisco shunt
-
-
rutin biosynthesis
-
-
S-(6-hydroxy-4-methylhexan-4-yl)-L-cysteinylglycine degradation
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine salvage I
-
-
S-adenosyl-L-methionine salvage II
-
-
S-methyl-5'-thioadenosine degradation I
-
-
S-methyl-5'-thioadenosine degradation IV
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
Salmonella enterica serotype O:13 O antigen biosynthesis
-
-
saponin biosynthesis II
-
-
scopoletin biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
selenate reduction
-
-
seleno-amino acid biosynthesis (plants)
-
-
Selenocompound metabolism
-
-
selenocysteine biosynthesis
-
-
serine metabolism
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
sophorosyloxydocosanoate deacetylation
-
-
sorgoleone biosynthesis
-
-
spermidine biosynthesis III
-
-
spermine and spermidine degradation I
-
-
spermine and spermidine degradation II
-
-
spermine and spermidine degradation III
-
-
spermine biosynthesis
-
-
Sphingolipid metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
stearate biosynthesis I (animals)
-
-
stellatic acid biosynthesis
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to chytochrome c oxidase via cytochrome c6
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
succinate to cytochrome c oxidase via plastocyanin
-
-
succinate to plastoquinol oxidase
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
sulfur volatiles biosynthesis
-
-
superoxide radicals degradation
-
-
superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of ornithine degradation
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
superpathway of photosynthetic hydrogen production
-
-
superpathway of polyamine biosynthesis II
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
syringetin biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
Terpenoid backbone biosynthesis
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
theophylline degradation
-
-
Thiamine metabolism
-
-
thioredoxin pathway
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
threonine metabolism
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
toluene degradation II (aerobic) (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
trans-zeatin biosynthesis
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose biosynthesis I
-
-
trehalose biosynthesis II
-
-
trehalose biosynthesis III
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
tricin biosynthesis
-
-
tRNA charging
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-glucuronate biosynthesis (from UDP-glucose)
-
-
UDP-alpha-D-xylose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
urea cycle
urea degradation II
-
-
UTP and CTP de novo biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
UTP and CTP dephosphorylation II
-
-
valine metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
viridicatumtoxin biosynthesis
-
-
vitamin B1 metabolism
-
-
Vitamin B6 metabolism
-
-
vitamin B6 metabolism
-
-
vitamin K-epoxide cycle
VTC2 cycle
-
-
xanthine and xanthosine salvage
-
-
xanthohumol biosynthesis
-
-
xanthommatin biosynthesis
-
-
Xylene degradation
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
Zeatin biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
exclusively localized in
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
inner leaf base
Manually annotated by BRENDA team
induction by light
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Allium cepa)