Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Borelli, G.; Fiamenghi, M.B.; Dos Santos, L.V.; Carazzolle, M.F.; Pereira, G.A.G.; Jose, J.
    Positive selection evidence in xylose-related genes suggests methylglyoxal reductase as a target for the improvement of yeasts fermentation in industry (2019), Genome Biol. Evol., 11, 1923-1938 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.1.1.283 gene CANTEDRAFT_112488 Yamadazyma tenuis
1.1.1.283 gene GRE2 Saccharomyces cerevisiae
1.1.1.283 gene GRE3 Saccharomyces cerevisiae
1.1.1.283 gene GRP2 Yarrowia lipolytica
1.1.1.283 gene PAS_chr3_0744 Komagataella phaffii

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
1.1.1.283 cytosol
-
[Candida] boidinii 5829
-
1.1.1.283 cytosol
-
Lipomyces starkeyi 5829
-
1.1.1.283 cytosol
-
Candida tropicalis 5829
-
1.1.1.283 cytosol
-
Wickerhamomyces anomalus 5829
-
1.1.1.283 cytosol
-
Kluyveromyces lactis 5829
-
1.1.1.283 cytosol
-
Blastobotrys adeninivorans 5829
-
1.1.1.283 cytosol
-
[Candida] arabinofermentans 5829
-
1.1.1.283 cytosol
-
Saccharomyces cerevisiae 5829
-
1.1.1.283 cytosol
-
Komagataella phaffii 5829
-
1.1.1.283 cytosol
-
Yamadazyma tenuis 5829
-
1.1.1.283 cytosol
-
Yarrowia lipolytica 5829
-
1.1.1.283 cytosol
-
Candida sojae 5829
-
1.1.1.283 cytosol
-
Suhomyces tanzawaensis 5829
-
1.1.1.283 cytosol
-
Kazachstania africana 5829
-

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.1.1.283 methylglyoxal + NADPH + H+ [Candida] boidinii
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Lipomyces starkeyi
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Candida tropicalis
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Wickerhamomyces anomalus
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Kluyveromyces lactis
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Blastobotrys adeninivorans
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ [Candida] arabinofermentans
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Saccharomyces cerevisiae
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Komagataella phaffii
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yarrowia lipolytica
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Candida sojae
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Suhomyces tanzawaensis
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Kazachstania africana
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis VKM Y-70
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis BCRC 21748
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis CBS 615
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Komagataella phaffii ATCC 20864
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Saccharomyces cerevisiae ATCC 204508
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis NBRC 10315
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis ATCC 10573
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Komagataella phaffii GS115
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis JCM 9827
-
(S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+ Yamadazyma tenuis NRRL Y-1498
-
(S)-lactaldehyde + NADP+
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.1.1.283 Blastobotrys adeninivorans
-
Arxula adeninivorans
-
1.1.1.283 Candida sojae
-
-
-
1.1.1.283 Candida tropicalis
-
-
-
1.1.1.283 Kazachstania africana
-
-
-
1.1.1.283 Kluyveromyces lactis
-
-
-
1.1.1.283 Komagataella phaffii C4R5F8 Pichia pastoris
-
1.1.1.283 Komagataella phaffii ATCC 20864 C4R5F8 Pichia pastoris
-
1.1.1.283 Komagataella phaffii GS115 C4R5F8 Pichia pastoris
-
1.1.1.283 Lipomyces starkeyi
-
-
-
1.1.1.283 no activity in Dekkera bruxellensis
-
-
-
1.1.1.283 no activity in Schizosaccharomyces pombe
-
-
-
1.1.1.283 Saccharomyces cerevisiae P38715
-
-
1.1.1.283 Saccharomyces cerevisiae Q12068
-
-
1.1.1.283 Saccharomyces cerevisiae ATCC 204508 P38715
-
-
1.1.1.283 Saccharomyces cerevisiae ATCC 204508 Q12068
-
-
1.1.1.283 Suhomyces tanzawaensis
-
-
-
1.1.1.283 Wickerhamomyces anomalus
-
-
-
1.1.1.283 Yamadazyma tenuis G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis ATCC 10573 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis BCRC 21748 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis CBS 615 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis JCM 9827 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis NBRC 10315 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis NRRL Y-1498 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yamadazyma tenuis VKM Y-70 G3AZL9 Yamadazyma tenuis
-
1.1.1.283 Yarrowia lipolytica A0A1D8NEA1 Candida lipolytica
-
1.1.1.283 [Candida] arabinofermentans
-
-
-
1.1.1.283 [Candida] boidinii
-
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.1.1.283 methylglyoxal + NADPH + H+
-
[Candida] boidinii (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Lipomyces starkeyi (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Candida tropicalis (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Wickerhamomyces anomalus (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Kluyveromyces lactis (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Blastobotrys adeninivorans (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
[Candida] arabinofermentans (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Saccharomyces cerevisiae (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Komagataella phaffii (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yarrowia lipolytica (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Candida sojae (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Suhomyces tanzawaensis (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Kazachstania africana (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis VKM Y-70 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis BCRC 21748 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis CBS 615 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Komagataella phaffii ATCC 20864 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Saccharomyces cerevisiae ATCC 204508 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis NBRC 10315 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis ATCC 10573 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Komagataella phaffii GS115 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis JCM 9827 (S)-lactaldehyde + NADP+
-
?
1.1.1.283 methylglyoxal + NADPH + H+
-
Yamadazyma tenuis NRRL Y-1498 (S)-lactaldehyde + NADP+
-
?

Synonyms

EC Number Synonyms Comment Organism
1.1.1.283 CANTEDRAFT_112488
-
Yamadazyma tenuis
1.1.1.283 Gre2
-
Yamadazyma tenuis
1.1.1.283 Gre2
-
Saccharomyces cerevisiae
1.1.1.283 GRE3
-
Saccharomyces cerevisiae
1.1.1.283 GRP2
-
Yarrowia lipolytica
1.1.1.283 methylglyoxal reductase
-
[Candida] boidinii
1.1.1.283 methylglyoxal reductase
-
Lipomyces starkeyi
1.1.1.283 methylglyoxal reductase
-
Candida tropicalis
1.1.1.283 methylglyoxal reductase
-
Wickerhamomyces anomalus
1.1.1.283 methylglyoxal reductase
-
Kluyveromyces lactis
1.1.1.283 methylglyoxal reductase
-
Blastobotrys adeninivorans
1.1.1.283 methylglyoxal reductase
-
[Candida] arabinofermentans
1.1.1.283 methylglyoxal reductase
-
Saccharomyces cerevisiae
1.1.1.283 methylglyoxal reductase
-
Komagataella phaffii
1.1.1.283 methylglyoxal reductase
-
Yamadazyma tenuis
1.1.1.283 methylglyoxal reductase
-
Yarrowia lipolytica
1.1.1.283 methylglyoxal reductase
-
Candida sojae
1.1.1.283 methylglyoxal reductase
-
Suhomyces tanzawaensis
1.1.1.283 methylglyoxal reductase
-
Kazachstania africana
1.1.1.283 MGR
-
[Candida] boidinii
1.1.1.283 MGR
-
Lipomyces starkeyi
1.1.1.283 MGR
-
Candida tropicalis
1.1.1.283 MGR
-
Wickerhamomyces anomalus
1.1.1.283 MGR
-
Kluyveromyces lactis
1.1.1.283 MGR
-
Blastobotrys adeninivorans
1.1.1.283 MGR
-
[Candida] arabinofermentans
1.1.1.283 MGR
-
Saccharomyces cerevisiae
1.1.1.283 MGR
-
Komagataella phaffii
1.1.1.283 MGR
-
Yamadazyma tenuis
1.1.1.283 MGR
-
Yarrowia lipolytica
1.1.1.283 MGR
-
Candida sojae
1.1.1.283 MGR
-
Suhomyces tanzawaensis
1.1.1.283 MGR
-
Kazachstania africana
1.1.1.283 PAS_chr3_0744
-
Komagataella phaffii

Cofactor

EC Number Cofactor Comment Organism Structure
1.1.1.283 NADPH
-
[Candida] boidinii
1.1.1.283 NADPH
-
Lipomyces starkeyi
1.1.1.283 NADPH
-
Candida tropicalis
1.1.1.283 NADPH
-
Wickerhamomyces anomalus
1.1.1.283 NADPH
-
Kluyveromyces lactis
1.1.1.283 NADPH
-
Blastobotrys adeninivorans
1.1.1.283 NADPH
-
[Candida] arabinofermentans
1.1.1.283 NADPH
-
Saccharomyces cerevisiae
1.1.1.283 NADPH
-
Komagataella phaffii
1.1.1.283 NADPH
-
Yamadazyma tenuis
1.1.1.283 NADPH
-
Yarrowia lipolytica
1.1.1.283 NADPH
-
Candida sojae
1.1.1.283 NADPH
-
Suhomyces tanzawaensis
1.1.1.283 NADPH
-
Kazachstania africana

General Information

EC Number General Information Comment Organism
1.1.1.283 evolution the organism contains 1 MGR gene copy Lipomyces starkeyi
1.1.1.283 evolution the organism contains 2 MGR gene copies Kluyveromyces lactis
1.1.1.283 evolution the organism contains 2 MGR gene copies Yamadazyma tenuis
1.1.1.283 evolution the organism contains 3 MGR gene copies Candida sojae
1.1.1.283 evolution the organism contains 3 MGR gene copies Kazachstania africana
1.1.1.283 evolution the organism contains 4 MGR gene copies Blastobotrys adeninivorans
1.1.1.283 evolution the organism contains 4 MGR gene copies [Candida] arabinofermentans
1.1.1.283 evolution the organism contains 4 MGR gene copies Saccharomyces cerevisiae
1.1.1.283 evolution the organism contains 5 MGR gene copies [Candida] boidinii
1.1.1.283 evolution the organism contains 6 MGR gene copies Komagataella phaffii
1.1.1.283 evolution the organism contains 7 MGR gene copies Suhomyces tanzawaensis
1.1.1.283 evolution the organism contains 8 MGR gene copies Wickerhamomyces anomalus
1.1.1.283 evolution the organism contains 9 MGR gene copies Yarrowia lipolytica
1.1.1.283 evolution the organism contains diverse MGR gene copies Candida tropicalis
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview [Candida] boidinii
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Lipomyces starkeyi
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Candida tropicalis
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Wickerhamomyces anomalus
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Kluyveromyces lactis
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Blastobotrys adeninivorans
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview [Candida] arabinofermentans
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Saccharomyces cerevisiae
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Komagataella phaffii
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Yamadazyma tenuis
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Yarrowia lipolytica
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Candida sojae
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Suhomyces tanzawaensis
1.1.1.283 metabolism metabolic pathways related to xylose and glucose consumption involving methylgyoxal reductase, overview Kazachstania africana
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance [Candida] boidinii
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Lipomyces starkeyi
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Candida tropicalis
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Wickerhamomyces anomalus
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Kluyveromyces lactis
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Blastobotrys adeninivorans
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance [Candida] arabinofermentans
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Saccharomyces cerevisiae
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Komagataella phaffii
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Yamadazyma tenuis
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Yarrowia lipolytica
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Candida sojae
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Suhomyces tanzawaensis
1.1.1.283 additional information evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Expansion, positive selectionmarks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the methylglyoxal reductases. A metabolic model suggests that selected codons among these proteins cause a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance Kazachstania africana
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview [Candida] boidinii
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Lipomyces starkeyi
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Candida tropicalis
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Wickerhamomyces anomalus
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Kluyveromyces lactis
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Blastobotrys adeninivorans
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview [Candida] arabinofermentans
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Saccharomyces cerevisiae
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Komagataella phaffii
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Yamadazyma tenuis
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Yarrowia lipolytica
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Candida sojae
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Suhomyces tanzawaensis
1.1.1.283 physiological function model for MGR role in oxidative imbalance, overview Kazachstania africana