Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Soupene, E.; Kuypers, F.A.
    Phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis (2017), Sci. Rep., 7, 15767 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

EC Number Cloned (Comment) Organism
4.1.1.65 expression in Escherichia coli Chlamydia trachomatis
6.2.1.20 gene slr1609, recombinant expression of enzyme AasC in Escherichia coli Chlamydia trachomatis

Inhibitors

EC Number Inhibitors Comment Organism Structure
2.3.1.51 additional information formation of acyl-ACP by the enzyme from Chlamydia trachomatis is sensitive to triacsin C, while rosiglitazone G inhibits fatty acid incorporation by Chlamydia-infected cells , while the fatty acid incorporation in HeLa cells is unaffected. The inhibitors acts on acyl-ACP synthase AasC (CT776), not lysophospholipid acyltransferase (CT775) Chlamydia trachomatis
6.2.1.20 rosiglitazone inhibits the enzyme in vivo in recombinant Escherichia coli Chlamydia trachomatis
6.2.1.20 Triacsin C inhibits the enzyme in vivo in recombinant Escherichia coli Chlamydia trachomatis

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
6.2.1.20 Mg2+ required Chlamydia trachomatis

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.3.1.51 acyl-CoA + 1-acyl-sn-glycerol 3-phosphate Chlamydia trachomatis
-
CoA + 1,2-diacyl-sn-glycerol 3-phosphate
-
?
2.3.1.51 acyl-CoA + 1-acyl-sn-glycerol 3-phosphate Chlamydia trachomatis D/UW-3/Cx
-
CoA + 1,2-diacyl-sn-glycerol 3-phosphate
-
?
2.3.1.51 additional information Chlamydia trachomatis the broad substrate specificity of acyltransferase CT775 provides the organism with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. In vivo incorporation of 1-acyl-GPC in cells infected with Chlamydia trachomatis confirms the active remodeling of exogenous lipids that are translocated into the inclusions ?
-
-
2.3.1.51 additional information Chlamydia trachomatis D/UW-3/Cx the broad substrate specificity of acyltransferase CT775 provides the organism with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. In vivo incorporation of 1-acyl-GPC in cells infected with Chlamydia trachomatis confirms the active remodeling of exogenous lipids that are translocated into the inclusions ?
-
-
6.2.1.20 ATP + a long-chain fatty acid + an [acyl-carrier protein] Chlamydia trachomatis
-
AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
-
?
6.2.1.20 ATP + a long-chain fatty acid + an [acyl-carrier protein] Chlamydia trachomatis D/UW-3/Cx
-
AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.3.1.51 Chlamydia trachomatis O84780
-
-
2.3.1.51 Chlamydia trachomatis D/UW-3/Cx O84780
-
-
4.1.1.65 Chlamydia trachomatis P0CD79
-
-
4.1.1.65 Chlamydia trachomatis serovar D P0CD79
-
-
6.2.1.20 Chlamydia trachomatis O84781 in human cells, e.g. HeLa cells
-
6.2.1.20 Chlamydia trachomatis D/UW-3/Cx O84781 in human cells, e.g. HeLa cells
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.3.1.51 acyl-CoA + 1-acyl-sn-glycerol 3-phosphate
-
Chlamydia trachomatis CoA + 1,2-diacyl-sn-glycerol 3-phosphate
-
?
2.3.1.51 acyl-CoA + 1-acyl-sn-glycerol 3-phosphate
-
Chlamydia trachomatis D/UW-3/Cx CoA + 1,2-diacyl-sn-glycerol 3-phosphate
-
?
2.3.1.51 additional information the broad substrate specificity of acyltransferase CT775 provides the organism with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. In vivo incorporation of 1-acyl-GPC in cells infected with Chlamydia trachomatis confirms the active remodeling of exogenous lipids that are translocated into the inclusions Chlamydia trachomatis ?
-
-
2.3.1.51 additional information broad substrate specificity of acyltransferase CT775. It accepts both acyl-ACP and acyl-CoA as acyl donors and, 1- or 2-acyl isomers of lysophosphoplipids as acyl acceptors, cf. EC 2.3.1.62. CT775 is not exclusively a 2-acyl-GPL acyltransferase, 1-acyl-GPL acyltransferase. The transfer of NBD-C16-CoA to 1-acyl-GPC by hLPCAT1 is strongly reduced in the presence of MeC18-CoA. Although unsaturated C18 fatty acids are very abundant at the sn2 position of human PLs, MeC18-CoA is a stronger competitor than C18:1-CoA, possible preference of the bacterial enzyme for the palmitic chain compared to the stearic chain. MeC18-CoA is a substrate for CT775 Chlamydia trachomatis ?
-
-
2.3.1.51 additional information the broad substrate specificity of acyltransferase CT775 provides the organism with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. In vivo incorporation of 1-acyl-GPC in cells infected with Chlamydia trachomatis confirms the active remodeling of exogenous lipids that are translocated into the inclusions Chlamydia trachomatis D/UW-3/Cx ?
-
-
2.3.1.51 additional information broad substrate specificity of acyltransferase CT775. It accepts both acyl-ACP and acyl-CoA as acyl donors and, 1- or 2-acyl isomers of lysophosphoplipids as acyl acceptors, cf. EC 2.3.1.62. CT775 is not exclusively a 2-acyl-GPL acyltransferase, 1-acyl-GPL acyltransferase. The transfer of NBD-C16-CoA to 1-acyl-GPC by hLPCAT1 is strongly reduced in the presence of MeC18-CoA. Although unsaturated C18 fatty acids are very abundant at the sn2 position of human PLs, MeC18-CoA is a stronger competitor than C18:1-CoA, possible preference of the bacterial enzyme for the palmitic chain compared to the stearic chain. MeC18-CoA is a substrate for CT775 Chlamydia trachomatis D/UW-3/Cx ?
-
-
4.1.1.65 Phosphatidyl-L-serine
-
Chlamydia trachomatis Phosphatidylethanolamine + CO2
-
?
4.1.1.65 Phosphatidyl-L-serine
-
Chlamydia trachomatis serovar D Phosphatidylethanolamine + CO2
-
?
6.2.1.20 ATP + a long-chain fatty acid + an [acyl-carrier protein]
-
Chlamydia trachomatis AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
-
?
6.2.1.20 ATP + a long-chain fatty acid + an [acyl-carrier protein]
-
Chlamydia trachomatis D/UW-3/Cx AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
-
?

Synonyms

EC Number Synonyms Comment Organism
2.3.1.51 CT775
-
Chlamydia trachomatis
2.3.1.51 CT_775
-
Chlamydia trachomatis
2.3.1.51 LPAT
-
Chlamydia trachomatis
2.3.1.51 lysophospholipid acyltransferase
-
Chlamydia trachomatis
2.3.1.51 More cf. EC 2.3.1.62 Chlamydia trachomatis
2.3.1.51 SnGlycerol 3-P acyltransferase UniProt Chlamydia trachomatis
4.1.1.65 CT699
-
Chlamydia trachomatis
6.2.1.20 AasC
-
Chlamydia trachomatis
6.2.1.20 ACP synthase
-
Chlamydia trachomatis
6.2.1.20 ACSL
-
Chlamydia trachomatis
6.2.1.20 acyl carrier protein synthase
-
Chlamydia trachomatis
6.2.1.20 acyl-ACP synthase
-
Chlamydia trachomatis
6.2.1.20 CT776
-
Chlamydia trachomatis
6.2.1.20 slr1609
-
Chlamydia trachomatis

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
6.2.1.20 30 37 in vivo assay at in recombinant Escherichia coli Chlamydia trachomatis

Cofactor

EC Number Cofactor Comment Organism Structure
6.2.1.20 ATP
-
Chlamydia trachomatis

General Information

EC Number General Information Comment Organism
2.3.1.51 metabolism phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis Chlamydia trachomatis
2.3.1.51 physiological function the enzyme is involved in the formation of the membrane of the human pathogen Chlamydia trachomatis. The broad substrate specificity of acyltransferase CT775 provides the organism with the capacity to incorporate straight-chain and bacterial specific branched-chain fatty acids. In vivo incorporation of 1-acyl-GPC in cells infected with Chlamydia trachomatis confirms the active remodeling of exogenous lipids that are translocated into the inclusions. Both the bacterial acyltransferase CT775 and human host LPCAT1 can transfer branched acyl-CoA to 1-acyl-GPC to form PC, thereby providing evidence for the presence of a system in which host lipids are modified by the addition of bacterial branched fatty acid within the inclusion Chlamydia trachomatis
4.1.1.65 physiological function enzyme is responsible for remodeling of human phosphatidylserine to bacterial phosphatidylethanolamine in human pathogen Chlamydia trachomatis Chlamydia trachomatis
6.2.1.20 malfunction fatty acid incorporation by Chlamydia-infected cells and Chlamydia AasC activity is inhibited by triacsin C and rosiglitazoneG Chlamydia trachomatis
6.2.1.20 metabolism phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis Chlamydia trachomatis
6.2.1.20 physiological function in infected cells, incorporation of exogenous long-chain fatty acids into membrane glycerophospholipids proceeds by their esterification to acyl-CoA by human long-chain acyl-CoA synthetase (hACSL) enzymes and to acyl-ACP by the bacterial acyl carrier protein (ACP) synthase AasC (CT776) Chlamydia trachomatis