Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Li, Y.; Ogola, H.J.; Sawa, Y.
    L-aspartate dehydrogenase: features and applications (2012), Appl. Microbiol. Biotechnol., 93, 503-516.
    View publication on PubMed

Application

EC Number Application Comment Organism
1.4.1.21 analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Klebsiella pneumoniae
1.4.1.21 analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Cupriavidus necator
1.4.1.21 analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Archaeoglobus fulgidus
1.4.1.21 analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Thermotoga maritima
1.4.1.21 analysis usage of AspDH in the quantitative measurement of amino acids, 2-oxo acids, and ammonia or urea in studies involving clinical settings, bioprocess control, and nutrition Pseudomonas aeruginosa
1.4.1.21 synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Klebsiella pneumoniae
1.4.1.21 synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Cupriavidus necator
1.4.1.21 synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Archaeoglobus fulgidus
1.4.1.21 synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Thermotoga maritima
1.4.1.21 synthesis potential application of AspDH for cost-effective and efficient L-Asp production via both fermentative and enzymatic systems. The ability to catalyze stereospecific reactions has also stimulated research interest in amino acid dehydrogenases as biocatalysts to produce synthons for pharmaceutical and food industries, e.g., enantiomerically pure non-natural amino acids as drug precursors Pseudomonas aeruginosa

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.4.1.21 gene KPN_03362, DNA and amino acid sequence determination and analysis Klebsiella pneumoniae
1.4.1.21 gene nadX, phylogenetic analysis Pseudomonas aeruginosa
1.4.1.21 gene nadX, the gene forms an operon with the NAD biosynthesis genes nadA and nadC Thermotoga maritima

Protein Variants

EC Number Protein Variants Comment Organism
1.4.1.21 additional information L-Asp production system consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and Escherichia coli fumarase, achieving a high level of L-Asp production from fumarate in fed-batch process with a molar conversion yield of 89.4% in LB medium supplemented with fumarate, and 100 mM NH4Cl, overview, or in the same production system with glucose M9 minimal medium containing 50 mM glucose and 80 mM urea as carbon and nitrogen source, respectively Pseudomonas aeruginosa

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
1.4.1.21 0.014
-
NADH pH not specified in the publication, 37°C Cupriavidus necator
1.4.1.21 0.045
-
NADH pH 8.2, 37°C Pseudomonas aeruginosa
1.4.1.21 0.061
-
NADH pH not specified in the publication, 50°C Archaeoglobus fulgidus
1.4.1.21 0.067
-
L-aspartate pH and temperature not specified in the publication, with NAD+ Thermotoga maritima
1.4.1.21 0.11
-
NAD+ pH 10.2, 37°C Cupriavidus necator
1.4.1.21 0.19
-
L-aspartate pH 10.2, 37°C, with NAD+ Cupriavidus necator
1.4.1.21 0.25
-
NAD+ pH and temperature not specified in the publication Thermotoga maritima
1.4.1.21 0.32
-
NADP+ pH 10.2, 37°C Cupriavidus necator
1.4.1.21 0.47
-
NAD+ pH 9.8, 37°C Pseudomonas aeruginosa
1.4.1.21 0.47
-
NADP+ pH 9.8, 37°C Pseudomonas aeruginosa
1.4.1.21 0.72
-
NADP+ pH and temperature not specified in the publication Thermotoga maritima
1.4.1.21 0.97
-
NAD+ pH 11.6, 50°C Archaeoglobus fulgidus
1.4.1.21 1.2
-
L-aspartate pH and temperature not specified in the publication, with NADP+ Thermotoga maritima
1.4.1.21 1.2
-
oxaloacetate pH not specified in the publication, 37°C, with NADH Cupriavidus necator
1.4.1.21 2.12
-
oxaloacetate pH 8.2, 37°C, with NADH Pseudomonas aeruginosa
1.4.1.21 2.3
-
L-aspartate pH 11.6, 50°C, with NAD+ Archaeoglobus fulgidus
1.4.1.21 2.32
-
oxaloacetate pH not specified in the publication, 50°C, with NADH Archaeoglobus fulgidus
1.4.1.21 4.3
-
L-aspartate pH 10.2, 37°C, with NADP+ Cupriavidus necator
1.4.1.21 4.74
-
L-aspartate pH 9.8, 37°C, with NADP+ Pseudomonas aeruginosa
1.4.1.21 4.87
-
L-aspartate pH 9.8, 37°C, with NAD+ Pseudomonas aeruginosa
1.4.1.21 7.43
-
NADP+ pH 11.6, 50°C Archaeoglobus fulgidus
1.4.1.21 10.1
-
NH3 pH 8.2, 37°C, with NADH Pseudomonas aeruginosa
1.4.1.21 14.9
-
NH3 pH not specified in the publication, 50°C, with NADH Archaeoglobus fulgidus
1.4.1.21 26.6
-
L-aspartate pH 11.6, 50°C, with NADP+ Archaeoglobus fulgidus
1.4.1.21 167
-
NH3 pH not specified in the publication, 37°C, with NADH Cupriavidus necator

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
1.4.1.21 26000
-
2 * 26000 Archaeoglobus fulgidus
1.4.1.21 27000
-
2 * 27000 Thermotoga maritima
1.4.1.21 27000
-
2 * 27000, about, sequence calculation Klebsiella pneumoniae
1.4.1.21 28000
-
2 * 28000 Cupriavidus necator
1.4.1.21 28000
-
2 * 28000 Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.4.1.21 L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Cupriavidus necator
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Archaeoglobus fulgidus
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Thermotoga maritima
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Pseudomonas aeruginosa
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae MGH 78578
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Cupriavidus necator JMP 134-1
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+ Klebsiella pneumoniae IFO 13541
-
oxaloacetate + NH3 + NAD(P)H + H+
-
r

Organism

EC Number Organism UniProt Comment Textmining
1.4.1.21 Archaeoglobus fulgidus
-
-
-
1.4.1.21 Cupriavidus necator
-
-
-
1.4.1.21 Cupriavidus necator JMP 134-1
-
-
-
1.4.1.21 Klebsiella pneumoniae
-
-
-
1.4.1.21 Klebsiella pneumoniae
-
subsp. pneumoniae, gene KPN_03362
-
1.4.1.21 Klebsiella pneumoniae IFO 13541
-
-
-
1.4.1.21 Klebsiella pneumoniae MGH 78578
-
subsp. pneumoniae, gene KPN_03362
-
1.4.1.21 Pseudomonas aeruginosa Q9HYA4 gene nadX
-
1.4.1.21 Thermotoga maritima
-
gene nadX
-

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
1.4.1.21 0.045
-
30°C, pH not specified in the publication Klebsiella pneumoniae
1.4.1.21 4.6
-
50°C, pH 11.6 Archaeoglobus fulgidus
1.4.1.21 127
-
pH 9.8, 37°C Pseudomonas aeruginosa
1.4.1.21 137
-
37°C, pH 10.2 Cupriavidus necator

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Cupriavidus necator oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Thermotoga maritima oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD(P)+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NAD(P)H + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Cupriavidus necator oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Thermotoga maritima oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NAD+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NADH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Cupriavidus necator oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Archaeoglobus fulgidus oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Thermotoga maritima oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Pseudomonas aeruginosa oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae MGH 78578 oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Cupriavidus necator JMP 134-1 oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 L-aspartate + H2O + NADP+
-
Klebsiella pneumoniae IFO 13541 oxaloacetate + NH3 + NADPH + H+
-
r
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Cupriavidus necator ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Archaeoglobus fulgidus ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Thermotoga maritima ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Pseudomonas aeruginosa ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae MGH 78578 ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Cupriavidus necator JMP 134-1 ?
-
?
1.4.1.21 additional information AspDH catalysis involves the transfer of pro-R (A-type) hydrogen from the nicotinamide moiety of the reduced coenzyme. AspDHs exhibit a characteristically narrow substrate range, with exclusive activity for L-Asp and oxaloacetate Klebsiella pneumoniae IFO 13541 ?
-
?
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Cupriavidus necator L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Archaeoglobus fulgidus L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Thermotoga maritima L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Pseudomonas aeruginosa L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae MGH 78578 L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Cupriavidus necator JMP 134-1 L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADH + H+
-
Klebsiella pneumoniae IFO 13541 L-aspartate + H2O + NAD+
-
r
1.4.1.21 oxaloacetate + NH3 + NADPH + H+
-
Klebsiella pneumoniae L-aspartate + H2O + NADP+
-
r
1.4.1.21 oxaloacetate + NH3 + NADPH + H+
-
Cupriavidus necator L-aspartate + H2O + NADP+
-
r
1.4.1.21 oxaloacetate + NH3 + NADPH + H+
-
Archaeoglobus fulgidus L-aspartate + H2O + NADP+
-
r
1.4.1.21 oxaloacetate + NH3 + NADPH + H+
-
Thermotoga maritima L-aspartate + H2O + NADP+
-
r
1.4.1.21 oxaloacetate + NH3 + NADPH + H+
-
Pseudomonas aeruginosa L-aspartate + H2O + NADP+
-
r

Subunits

EC Number Subunits Comment Organism
1.4.1.21 homodimer 2 * 28000 Cupriavidus necator
1.4.1.21 homodimer 2 * 28000 Pseudomonas aeruginosa
1.4.1.21 homodimer 2 * 26000 Archaeoglobus fulgidus
1.4.1.21 homodimer 2 * 27000 Thermotoga maritima
1.4.1.21 homodimer 2 * 27000, about, sequence calculation Klebsiella pneumoniae
1.4.1.21 homodimer three-dimensional structure comparisons, overview Klebsiella pneumoniae
1.4.1.21 More three-dimensional structure comparisons, overview Klebsiella pneumoniae
1.4.1.21 More three-dimensional structure comparisons, overview Cupriavidus necator
1.4.1.21 More three-dimensional structure comparisons, overview Archaeoglobus fulgidus
1.4.1.21 More three-dimensional structure comparisons, overview Thermotoga maritima
1.4.1.21 More three-dimensional structure comparisons, overview Pseudomonas aeruginosa

Synonyms

EC Number Synonyms Comment Organism
1.4.1.21 L-aspartate dehydrogenase
-
Klebsiella pneumoniae
1.4.1.21 L-aspartate dehydrogenase
-
Cupriavidus necator
1.4.1.21 L-aspartate dehydrogenase
-
Archaeoglobus fulgidus
1.4.1.21 L-aspartate dehydrogenase
-
Thermotoga maritima
1.4.1.21 L-aspartate dehydrogenase
-
Pseudomonas aeruginosa
1.4.1.21 L-aspDH
-
Klebsiella pneumoniae
1.4.1.21 L-aspDH
-
Cupriavidus necator
1.4.1.21 L-aspDH
-
Archaeoglobus fulgidus
1.4.1.21 L-aspDH
-
Thermotoga maritima
1.4.1.21 L-aspDH
-
Pseudomonas aeruginosa

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
1.4.1.21 50
-
-
Cupriavidus necator
1.4.1.21 50
-
-
Pseudomonas aeruginosa
1.4.1.21 70
-
above Thermotoga maritima
1.4.1.21 80
-
-
Archaeoglobus fulgidus

Temperature Stability [°C]

EC Number Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
1.4.1.21 additional information
-
improving the thermostability of mesophilic AspDHs by the addition of 0.4 M NaCl or 30% glycerol Pseudomonas aeruginosa
1.4.1.21 additional information
-
thermostability of AfuAspDH is mainly ascribed to the intersubunit ion and aromatic pair interactions in the enzyme Archaeoglobus fulgidus
1.4.1.21 additional information
-
thermostability of TmaAspDH is mainly ascribed to the intersubunit ion and aromatic pair interactions in the enzyme Thermotoga maritima
1.4.1.21 48
-
20 min, Tm of purified enzyme Pseudomonas aeruginosa
1.4.1.21 49
-
20 min, Tm of purified enzyme Cupriavidus necator
1.4.1.21 80
-
above, Tm of purified enzyme Archaeoglobus fulgidus
1.4.1.21 80
-
above, Tm of purified enzyme Thermotoga maritima
1.4.1.21 100
-
half-life is 10 min Archaeoglobus fulgidus
1.4.1.21 100
-
half-life is 10.7 min Thermotoga maritima

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.4.1.21 9.8
-
deamination Pseudomonas aeruginosa
1.4.1.21 10.2
-
deamination Cupriavidus necator
1.4.1.21 11.6
-
deamination Archaeoglobus fulgidus

pH Stability

EC Number pH Stability pH Stability Maximum Comment Organism
1.4.1.21 4.5 11.5 stable Archaeoglobus fulgidus
1.4.1.21 5.8 6.6 stable Pseudomonas aeruginosa
1.4.1.21 5.8 7.2 stable Cupriavidus necator

Cofactor

EC Number Cofactor Comment Organism Structure
1.4.1.21 additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies Archaeoglobus fulgidus
1.4.1.21 additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies Thermotoga maritima
1.4.1.21 additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, approximately 8fold higher Km value for NADP+ over NAD+ Cupriavidus necator
1.4.1.21 additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, similar Km values for NADP+ and NAD+ Pseudomonas aeruginosa
1.4.1.21 additional information L-AspDH can utilize both NAD+ and NADP+ as a coenzyme, albeit at different efficiencies, the L-AspDH of Klebsiella pneumoniae shows a higher specificity for NADP+ but inactive with NAD+ Klebsiella pneumoniae
1.4.1.21 NAD+
-
Klebsiella pneumoniae
1.4.1.21 NAD+
-
Cupriavidus necator
1.4.1.21 NAD+
-
Archaeoglobus fulgidus
1.4.1.21 NAD+
-
Thermotoga maritima
1.4.1.21 NAD+
-
Pseudomonas aeruginosa
1.4.1.21 NADH
-
Klebsiella pneumoniae
1.4.1.21 NADH
-
Cupriavidus necator
1.4.1.21 NADH
-
Archaeoglobus fulgidus
1.4.1.21 NADH
-
Thermotoga maritima
1.4.1.21 NADH
-
Pseudomonas aeruginosa
1.4.1.21 NADP+
-
Klebsiella pneumoniae
1.4.1.21 NADP+
-
Cupriavidus necator
1.4.1.21 NADP+
-
Archaeoglobus fulgidus
1.4.1.21 NADP+
-
Thermotoga maritima
1.4.1.21 NADP+
-
Pseudomonas aeruginosa
1.4.1.21 NADPH
-
Klebsiella pneumoniae
1.4.1.21 NADPH
-
Cupriavidus necator
1.4.1.21 NADPH
-
Archaeoglobus fulgidus
1.4.1.21 NADPH
-
Thermotoga maritima
1.4.1.21 NADPH
-
Pseudomonas aeruginosa

General Information

EC Number General Information Comment Organism
1.4.1.21 evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Klebsiella pneumoniae
1.4.1.21 evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Cupriavidus necator
1.4.1.21 evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Archaeoglobus fulgidus
1.4.1.21 evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Thermotoga maritima
1.4.1.21 evolution L-AspDH members and other putative homologs share surprisingly low homology, below 10%, with the other amino acid dehydrogenases Pseudomonas aeruginosa
1.4.1.21 metabolism proposed pathways of L-Asp metabolism, overview Cupriavidus necator
1.4.1.21 additional information three-dimensional structure comparisons, overview Klebsiella pneumoniae
1.4.1.21 additional information three-dimensional structure comparisons, overview Cupriavidus necator
1.4.1.21 additional information three-dimensional structure comparisons, overview Archaeoglobus fulgidus
1.4.1.21 additional information three-dimensional structure comparisons, overview Thermotoga maritima
1.4.1.21 additional information three-dimensional structure comparisons, overview Pseudomonas aeruginosa
1.4.1.21 physiological function involvement of L-AspDH in NAD biosynthesis, overview Klebsiella pneumoniae
1.4.1.21 physiological function involvement of L-AspDH in NAD biosynthesis, overview Cupriavidus necator
1.4.1.21 physiological function involvement of L-AspDH in NAD biosynthesis, overview Archaeoglobus fulgidus
1.4.1.21 physiological function involvement of L-AspDH in NAD biosynthesis, overview Thermotoga maritima
1.4.1.21 physiological function involvement of L-AspDH in NAD biosynthesis, overview Pseudomonas aeruginosa