Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Katane, M.; Homma, H.
    D-aspartate oxidase: The sole catabolic enzyme acting on free D-aspartate in mammals (2010), Chem. Biodivers., 7, 1435-1449.
    View publication on PubMed

Application

EC Number Application Comment Organism
1.4.3.1 drug development a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease Mus musculus
1.4.3.1 drug development a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease Homo sapiens

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.4.3.1
-
Vanrija humicola
1.4.3.1 from brain, expressed in Escherichia coli Homo sapiens
1.4.3.1 from kidney, expressed in Escherichia coli Mus musculus
1.4.3.1 from kidney, expressed in Escherichia coli Sus scrofa
1.4.3.1 from kidney, expressed in Escherichia coli Bos taurus

Protein Variants

EC Number Protein Variants Comment Organism
1.4.3.1 additional information intense D-Asp immunoreactivity is observed in the intermediate lobe of the pituitary gland of the DDO-deficient mice, phenotype of DDO-deficient mice, detailed overview Mus musculus
1.4.3.1 R216X activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg216 residue with other amino acid residues Mus musculus
1.4.3.1 R237X activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg237 residue with other amino acid residues Mus musculus
1.4.3.1 S308G the mutation results in lack of a side-chain OH group at position 308, and increases mutant enzyme catalytic efficiency against D-Asp and NMDA to about 7-10times higher than that of the wild-type enzyme. Moreover, the dissociation-constant value for FAD of this Gly-substitution mutant is significantly lower than that of the wild-type enzyme, suggesting that it has enhanced ability to bind to FAD Mus musculus

Inhibitors

EC Number Inhibitors Comment Organism Structure
1.4.3.1 malonate
-
Bos taurus
1.4.3.1 malonate
-
Caenorhabditis elegans
1.4.3.1 malonate
-
Homo sapiens
1.4.3.1 malonate
-
Mus musculus
1.4.3.1 malonate
-
Ovis aries
1.4.3.1 malonate
-
Rattus norvegicus
1.4.3.1 malonate
-
Sus scrofa
1.4.3.1 malonate
-
Vanrija humicola
1.4.3.1 meso-tartrate
-
Bos taurus
1.4.3.1 meso-tartrate
-
Caenorhabditis elegans
1.4.3.1 meso-tartrate
-
Homo sapiens
1.4.3.1 meso-tartrate
-
Mus musculus
1.4.3.1 meso-tartrate
-
Ovis aries
1.4.3.1 meso-tartrate
-
Rattus norvegicus
1.4.3.1 meso-tartrate
-
Sus scrofa
1.4.3.1 meso-tartrate
-
Vanrija humicola
1.4.3.1 thiolactomycin
-
Bos taurus
1.4.3.1 thiolactomycin
-
Caenorhabditis elegans
1.4.3.1 thiolactomycin
-
Homo sapiens
1.4.3.1 thiolactomycin
-
Mus musculus
1.4.3.1 thiolactomycin
-
Ovis aries
1.4.3.1 thiolactomycin
-
Rattus norvegicus
1.4.3.1 thiolactomycin
-
Sus scrofa
1.4.3.1 thiolactomycin
-
Vanrija humicola

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
1.4.3.1 axon
-
Rattus norvegicus 30424
-
1.4.3.1 cytoplasm DDO-2 Caenorhabditis elegans 5737
-
1.4.3.1 extracellular DDO-3 Caenorhabditis elegans
-
-
1.4.3.1 heterochromatin in magnocellular neurons of the rat supraoptic nucleus, but not in other subcellular structures of the nucleus and soma, including the nucleoplasm and cytoplasm Rattus norvegicus 792
-
1.4.3.1 nucleolus in magnocellular neurons of the rat supraoptic nucleus Rattus norvegicus 5730
-
1.4.3.1 peroxisome
-
Mus musculus 5777
-
1.4.3.1 peroxisome
-
Homo sapiens 5777
-
1.4.3.1 peroxisome
-
Rattus norvegicus 5777
-
1.4.3.1 peroxisome
-
Sus scrofa 5777
-
1.4.3.1 peroxisome
-
Bos taurus 5777
-
1.4.3.1 peroxisome
-
Ovis aries 5777
-
1.4.3.1 peroxisome DDO-1 Caenorhabditis elegans 5777
-

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.4.3.1 D-aspartate + H2O + O2 Mus musculus
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Homo sapiens
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Rattus norvegicus
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Sus scrofa
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Bos taurus
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Ovis aries
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Caenorhabditis elegans
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 Vanrija humicola
-
oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-glutamate + H2O + O2 Caenorhabditis elegans preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu 2-oxoglutarate + NH3 + H2O2
-
?
1.4.3.1 additional information Caenorhabditis elegans H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO ?
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Mus musculus
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Homo sapiens
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Rattus norvegicus
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Sus scrofa
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Bos taurus
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Ovis aries
-
oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2 Caenorhabditis elegans
-
oxaloacetate + methylamine + H2O2
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.4.3.1 Bos taurus
-
-
-
1.4.3.1 Caenorhabditis elegans
-
at least three genes encoding functional DDO isozymes DDO-1, DDO-2, and DDO-3
-
1.4.3.1 Homo sapiens
-
-
-
1.4.3.1 Mus musculus
-
-
-
1.4.3.1 Ovis aries
-
-
-
1.4.3.1 Rattus norvegicus
-
-
-
1.4.3.1 Sus scrofa
-
-
-
1.4.3.1 Vanrija humicola
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
1.4.3.1 recombinant enzyme Vanrija humicola
1.4.3.1 recombinant enzyme from Escherichia coli Mus musculus
1.4.3.1 recombinant enzyme from Escherichia coli Homo sapiens
1.4.3.1 recombinant enzyme from Escherichia coli Sus scrofa
1.4.3.1 recombinant enzyme from Escherichia coli Bos taurus

Source Tissue

EC Number Source Tissue Comment Organism Textmining
1.4.3.1 adrenal gland
-
Rattus norvegicus
-
1.4.3.1 adrenal gland adrenal cortex and adrenal medulla epinephrine cells Mus musculus
-
1.4.3.1 brain cerebellar cortex Bergmann glia Mus musculus
-
1.4.3.1 brain embryonic, D-Asp initially emerges in the hindbrain and then spreads into the forebrain. Within nerve cells of the rat embryonic brain, D-Asp first occurs in the cell bodies of neuroblasts in the outer layer of the neuronal epithelium, and then it appears in the processes of the cells Rattus norvegicus
-
1.4.3.1 cerebral cortex relatively high enzyme expression just after birth, the content gradually decreases thereafter Homo sapiens
-
1.4.3.1 cerebrum relatively high enzyme expression just after birth, the content gradually decreases thereafter Rattus norvegicus
-
1.4.3.1 follicular fluid
-
Homo sapiens
-
1.4.3.1 gastric juice
-
Homo sapiens
-
1.4.3.1 hippocampus
-
Mus musculus
-
1.4.3.1 hypothalamus in the cell bodies of the neurons Rattus norvegicus
-
1.4.3.1 kidney
-
Rattus norvegicus
-
1.4.3.1 kidney
-
Sus scrofa
-
1.4.3.1 kidney
-
Bos taurus
-
1.4.3.1 kidney
-
Ovis aries
-
1.4.3.1 kidney in Bowman's capsule, renal thin limbs of Henle's loop Mus musculus
-
1.4.3.1 Leydig cell
-
Mus musculus
-
1.4.3.1 liver
-
Mus musculus
-
1.4.3.1 liver
-
Homo sapiens
-
1.4.3.1 liver
-
Rattus norvegicus
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Mus musculus
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Homo sapiens
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Rattus norvegicus
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Sus scrofa
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Bos taurus
-
1.4.3.1 additional information development-related patterns of D-Asp expression differ among various mammalian tissues, overview Ovis aries
-
1.4.3.1 neuron primary cultured Rattus norvegicus
-
1.4.3.1 pancreas
-
Rattus norvegicus
-
1.4.3.1 PC-12 cell pheochromocytoma cells Rattus norvegicus
-
1.4.3.1 pineal gland D-Asp content in the adult rat pineal gland is very high, especially in the distal (caudal) region of the gland, little staining is found in the proximal (rostral) region Rattus norvegicus
-
1.4.3.1 pinealocyte
-
Rattus norvegicus
-
1.4.3.1 pituitary gland intermediate lobe Mus musculus
-
1.4.3.1 pituitary gland prolactin-producing cells in the anterior lobe and microglial cells in the posterior lobe, D-Asp immunoreactivity is observed specifically in prolactin-producing mammotrophs or in a closely related cell type Rattus norvegicus
-
1.4.3.1 retina
-
Mus musculus
-
1.4.3.1 retina
-
Rattus norvegicus
-
1.4.3.1 salivary gland
-
Homo sapiens
-
1.4.3.1 salivary gland
-
Rattus norvegicus
-
1.4.3.1 spermatozoon
-
Homo sapiens
-
1.4.3.1 testis
-
Mus musculus
-
1.4.3.1 testis
-
Rattus norvegicus
-
1.4.3.1 testis
-
Sus scrofa
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.4.3.1 D-aspartate + H2O + O2
-
Mus musculus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Homo sapiens oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Rattus norvegicus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Sus scrofa oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Bos taurus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Ovis aries oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Caenorhabditis elegans oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2
-
Vanrija humicola oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Mus musculus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Homo sapiens oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Rattus norvegicus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Sus scrofa oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Bos taurus oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Ovis aries oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-aspartate + H2O + O2 in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3 Caenorhabditis elegans oxaloacetate + NH3 + H2O2
-
?
1.4.3.1 D-glutamate + H2O + O2 preferred substrate Caenorhabditis elegans 2-oxoglutarate + NH3 + H2O2
-
?
1.4.3.1 D-glutamate + H2O + O2 preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu Caenorhabditis elegans 2-oxoglutarate + NH3 + H2O2
-
?
1.4.3.1 additional information H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO Caenorhabditis elegans ?
-
?
1.4.3.1 additional information Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding Sus scrofa ?
-
?
1.4.3.1 additional information Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding, overview Mus musculus ?
-
?
1.4.3.1 additional information in contrast to the mammalian and Cryptococcus humicola DDOs, the three kinds of Caenorhabditis elegans DDOs show relatively higher catalytic efficiency against D-Glu than against D-Asp and NMDA Caenorhabditis elegans ?
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Mus musculus oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Homo sapiens oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Rattus norvegicus oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Sus scrofa oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Bos taurus oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Ovis aries oxaloacetate + methylamine + H2O2
-
?
1.4.3.1 N-methyl-D-aspartate + H2O + O2
-
Caenorhabditis elegans oxaloacetate + methylamine + H2O2
-
?

Subunits

EC Number Subunits Comment Organism
1.4.3.1 ? x * 37000-38000 Mus musculus
1.4.3.1 ? x * 37000-38000 Homo sapiens
1.4.3.1 ? x * 37000-38000 Rattus norvegicus
1.4.3.1 homotetramer 4 * 37000-38000 Sus scrofa
1.4.3.1 homotetramer 4 * 37000-38000 Vanrija humicola
1.4.3.1 monomer 1 * 37000-38000 Bos taurus
1.4.3.1 More three-dimensional structure by homology-modeling Mus musculus
1.4.3.1 More three-dimensional structure by homology-modeling Sus scrofa

Synonyms

EC Number Synonyms Comment Organism
1.4.3.1 DDO
-
Mus musculus
1.4.3.1 DDO
-
Homo sapiens
1.4.3.1 DDO
-
Rattus norvegicus
1.4.3.1 DDO
-
Sus scrofa
1.4.3.1 DDO
-
Bos taurus
1.4.3.1 DDO
-
Ovis aries
1.4.3.1 DDO
-
Caenorhabditis elegans
1.4.3.1 DDO
-
Vanrija humicola

Cofactor

EC Number Cofactor Comment Organism Structure
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO Ovis aries
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO Caenorhabditis elegans
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Mus musculus
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Homo sapiens
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Rattus norvegicus
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Sus scrofa
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Bos taurus
1.4.3.1 FAD one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly Vanrija humicola

General Information

EC Number General Information Comment Organism
1.4.3.1 additional information melatonin secretion and D-Asp release from pinealocytes are enhanced by stimulation with noradrenaline, after which the melatonin secretion is suppressed by the action of the released D-Asp on the cells. Through this negative feedback mechanism, noradrenaline may regulate its ability to induce melatonin secretion in the pineal gland Rattus norvegicus
1.4.3.1 physiological function D-Asp is important in the development and neurogenesis of the brain. D-Asp plays a regulatory role in the synthesis and secretion of prolactin in the anterior lobe of the pituitary gland. D-Asp directly interacts with DNA and/or acts on nuclear protein(s) involved in the regulation of gene transcription, through which d-Asp controls gene expression in the hypothalamo-neurohypophyseal system Rattus norvegicus
1.4.3.1 physiological function relevance of D-Asp and DDO to NMDA receptor-related disease, D-Asp protects against sensorimotor-gating deficits, which are observed in schizophrenic patients, overview. D-Asp is important in the development and neurogenesis of the brain Homo sapiens
1.4.3.1 physiological function relevance of D-Asp and DDO to NMDA receptor-related disease, overview. Phenotype of DDO-deficient mice, DDO-deficient mice display significant deficits in prepulse inhibition, and exhibit reduced immobility time in the Porsolt forced-swim test, a model of depression, suggesting that the genetic ablation of DDO has a specific antidepressant action, overview Mus musculus