BRENDA - Enzyme Database

D-aspartate oxidase: The sole catabolic enzyme acting on free D-aspartate in mammals

Katane, M.; Homma, H.; Chem. Biodivers. 7, 1435-1449 (2010)

Data extracted from this reference:

Application
EC Number
Application
Commentary
Organism
1.4.3.1
drug development
a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease
Homo sapiens
1.4.3.1
drug development
a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease
Mus musculus
Cloned(Commentary)
EC Number
Commentary
Organism
1.4.3.1
-
Vanrija humicola
1.4.3.1
from brain, expressed in Escherichia coli
Homo sapiens
1.4.3.1
from kidney, expressed in Escherichia coli
Bos taurus
1.4.3.1
from kidney, expressed in Escherichia coli
Mus musculus
1.4.3.1
from kidney, expressed in Escherichia coli
Sus scrofa
Engineering
EC Number
Amino acid exchange
Commentary
Organism
1.4.3.1
additional information
intense D-Asp immunoreactivity is observed in the intermediate lobe of the pituitary gland of the DDO-deficient mice, phenotype of DDO-deficient mice, detailed overview
Mus musculus
1.4.3.1
R216X
activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg216 residue with other amino acid residues
Mus musculus
1.4.3.1
R237X
activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg237 residue with other amino acid residues
Mus musculus
1.4.3.1
S308G
the mutation results in lack of a side-chain OH group at position 308, and increases mutant enzyme catalytic efficiency against D-Asp and NMDA to about 7-10times higher than that of the wild-type enzyme. Moreover, the dissociation-constant value for FAD of this Gly-substitution mutant is significantly lower than that of the wild-type enzyme, suggesting that it has enhanced ability to bind to FAD
Mus musculus
Inhibitors
EC Number
Inhibitors
Commentary
Organism
Structure
1.4.3.1
malonate
-
Bos taurus
1.4.3.1
malonate
-
Caenorhabditis elegans
1.4.3.1
malonate
-
Ovis aries
1.4.3.1
malonate
-
Sus scrofa
1.4.3.1
malonate
-
Vanrija humicola
1.4.3.1
malonate
-
Homo sapiens
1.4.3.1
malonate
-
Mus musculus
1.4.3.1
malonate
-
Rattus norvegicus
1.4.3.1
meso-tartrate
-
Bos taurus
1.4.3.1
meso-tartrate
-
Caenorhabditis elegans
1.4.3.1
meso-tartrate
-
Ovis aries
1.4.3.1
meso-tartrate
-
Sus scrofa
1.4.3.1
meso-tartrate
-
Vanrija humicola
1.4.3.1
meso-tartrate
-
Homo sapiens
1.4.3.1
meso-tartrate
-
Mus musculus
1.4.3.1
meso-tartrate
-
Rattus norvegicus
1.4.3.1
thiolactomycin
-
Bos taurus
1.4.3.1
thiolactomycin
-
Caenorhabditis elegans
1.4.3.1
thiolactomycin
-
Homo sapiens
1.4.3.1
thiolactomycin
-
Mus musculus
1.4.3.1
thiolactomycin
-
Ovis aries
1.4.3.1
thiolactomycin
-
Rattus norvegicus
1.4.3.1
thiolactomycin
-
Sus scrofa
1.4.3.1
thiolactomycin
-
Vanrija humicola
Localization
EC Number
Localization
Commentary
Organism
GeneOntology No.
Textmining
1.4.3.1
axon
-
Rattus norvegicus
30424
-
1.4.3.1
cytoplasm
DDO-2
Caenorhabditis elegans
5737
-
1.4.3.1
extracellular
DDO-3
Caenorhabditis elegans
-
-
1.4.3.1
heterochromatin
in magnocellular neurons of the rat supraoptic nucleus, but not in other subcellular structures of the nucleus and soma, including the nucleoplasm and cytoplasm
Rattus norvegicus
792
-
1.4.3.1
nucleolus
in magnocellular neurons of the rat supraoptic nucleus
Rattus norvegicus
5730
-
1.4.3.1
peroxisome
-
Bos taurus
5777
-
1.4.3.1
peroxisome
DDO-1
Caenorhabditis elegans
5777
-
1.4.3.1
peroxisome
-
Homo sapiens
5777
-
1.4.3.1
peroxisome
-
Mus musculus
5777
-
1.4.3.1
peroxisome
-
Ovis aries
5777
-
1.4.3.1
peroxisome
-
Rattus norvegicus
5777
-
1.4.3.1
peroxisome
-
Sus scrofa
5777
-
Natural Substrates/ Products (Substrates)
EC Number
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
1.4.3.1
D-aspartate + H2O + O2
Mus musculus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Homo sapiens
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Rattus norvegicus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Sus scrofa
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Bos taurus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Ovis aries
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Caenorhabditis elegans
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Vanrija humicola
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-glutamate + H2O + O2
Caenorhabditis elegans
preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu
2-oxoglutarate + NH3 + H2O2
-
-
?
1.4.3.1
additional information
Caenorhabditis elegans
H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO
?
-
-
-
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Mus musculus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Homo sapiens
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Rattus norvegicus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Sus scrofa
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Bos taurus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Ovis aries
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Caenorhabditis elegans
-
oxaloacetate + methylamine + H2O2
-
-
?
Organism
EC Number
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
1.4.3.1
Bos taurus
-
-
-
1.4.3.1
Caenorhabditis elegans
-
at least three genes encoding functional DDO isozymes DDO-1, DDO-2, and DDO-3
-
1.4.3.1
Homo sapiens
-
-
-
1.4.3.1
Mus musculus
-
-
-
1.4.3.1
Ovis aries
-
-
-
1.4.3.1
Rattus norvegicus
-
-
-
1.4.3.1
Sus scrofa
-
-
-
1.4.3.1
Vanrija humicola
-
-
-
Purification (Commentary)
EC Number
Commentary
Organism
1.4.3.1
recombinant enzyme
Vanrija humicola
1.4.3.1
recombinant enzyme from Escherichia coli
Bos taurus
1.4.3.1
recombinant enzyme from Escherichia coli
Homo sapiens
1.4.3.1
recombinant enzyme from Escherichia coli
Mus musculus
1.4.3.1
recombinant enzyme from Escherichia coli
Sus scrofa
Source Tissue
EC Number
Source Tissue
Commentary
Organism
Textmining
1.4.3.1
adrenal gland
adrenal cortex and adrenal medulla epinephrine cells
Mus musculus
-
1.4.3.1
adrenal gland
-
Rattus norvegicus
-
1.4.3.1
brain
cerebellar cortex Bergmann glia
Mus musculus
-
1.4.3.1
brain
embryonic, D-Asp initially emerges in the hindbrain and then spreads into the forebrain. Within nerve cells of the rat embryonic brain, D-Asp first occurs in the cell bodies of neuroblasts in the outer layer of the neuronal epithelium, and then it appears in the processes of the cells
Rattus norvegicus
-
1.4.3.1
cerebral cortex
relatively high enzyme expression just after birth, the content gradually decreases thereafter
Homo sapiens
-
1.4.3.1
cerebrum
relatively high enzyme expression just after birth, the content gradually decreases thereafter
Rattus norvegicus
-
1.4.3.1
follicular fluid
-
Homo sapiens
-
1.4.3.1
gastric juice
-
Homo sapiens
-
1.4.3.1
hippocampus
-
Mus musculus
-
1.4.3.1
hypothalamus
in the cell bodies of the neurons
Rattus norvegicus
-
1.4.3.1
kidney
-
Bos taurus
-
1.4.3.1
kidney
in Bowman's capsule, renal thin limbs of Henle's loop
Mus musculus
-
1.4.3.1
kidney
-
Ovis aries
-
1.4.3.1
kidney
-
Rattus norvegicus
-
1.4.3.1
kidney
-
Sus scrofa
-
1.4.3.1
Leydig cell
-
Mus musculus
-
1.4.3.1
liver
-
Homo sapiens
-
1.4.3.1
liver
-
Mus musculus
-
1.4.3.1
liver
-
Rattus norvegicus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Bos taurus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Homo sapiens
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Mus musculus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Ovis aries
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Rattus norvegicus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Sus scrofa
-
1.4.3.1
neuron
primary cultured
Rattus norvegicus
-
1.4.3.1
pancreas
-
Rattus norvegicus
-
1.4.3.1
PC-12 cell
pheochromocytoma cells
Rattus norvegicus
-
1.4.3.1
pineal gland
D-Asp content in the adult rat pineal gland is very high, especially in the distal (caudal) region of the gland, little staining is found in the proximal (rostral) region
Rattus norvegicus
-
1.4.3.1
pinealocyte
-
Rattus norvegicus
-
1.4.3.1
pituitary gland
intermediate lobe
Mus musculus
-
1.4.3.1
pituitary gland
prolactin-producing cells in the anterior lobe and microglial cells in the posterior lobe, D-Asp immunoreactivity is observed specifically in prolactin-producing mammotrophs or in a closely related cell type
Rattus norvegicus
-
1.4.3.1
retina
-
Mus musculus
-
1.4.3.1
retina
-
Rattus norvegicus
-
1.4.3.1
salivary gland
-
Homo sapiens
-
1.4.3.1
salivary gland
-
Rattus norvegicus
-
1.4.3.1
spermatozoon
-
Homo sapiens
-
1.4.3.1
testis
-
Mus musculus
-
1.4.3.1
testis
-
Rattus norvegicus
-
1.4.3.1
testis
-
Sus scrofa
-
Substrates and Products (Substrate)
EC Number
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
1.4.3.1
D-aspartate + H2O + O2
-
711719
Mus musculus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Homo sapiens
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Rattus norvegicus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Sus scrofa
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Bos taurus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Ovis aries
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Caenorhabditis elegans
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Vanrija humicola
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Mus musculus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Homo sapiens
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Rattus norvegicus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Sus scrofa
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Bos taurus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Ovis aries
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Caenorhabditis elegans
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-glutamate + H2O + O2
preferred substrate
711719
Caenorhabditis elegans
2-oxoglutarate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-glutamate + H2O + O2
preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu
711719
Caenorhabditis elegans
2-oxoglutarate + NH3 + H2O2
-
-
-
?
1.4.3.1
additional information
H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO
711719
Caenorhabditis elegans
?
-
-
-
-
1.4.3.1
additional information
Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding
711719
Sus scrofa
?
-
-
-
-
1.4.3.1
additional information
Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding, overview
711719
Mus musculus
?
-
-
-
-
1.4.3.1
additional information
in contrast to the mammalian and Cryptococcus humicola DDOs, the three kinds of Caenorhabditis elegans DDOs show relatively higher catalytic efficiency against D-Glu than against D-Asp and NMDA
711719
Caenorhabditis elegans
?
-
-
-
-
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Mus musculus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Homo sapiens
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Rattus norvegicus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Sus scrofa
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Bos taurus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Ovis aries
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Caenorhabditis elegans
oxaloacetate + methylamine + H2O2
-
-
-
?
Subunits
EC Number
Subunits
Commentary
Organism
1.4.3.1
?
x * 37000-38000
Homo sapiens
1.4.3.1
?
x * 37000-38000
Mus musculus
1.4.3.1
?
x * 37000-38000
Rattus norvegicus
1.4.3.1
homotetramer
4 * 37000-38000
Sus scrofa
1.4.3.1
homotetramer
4 * 37000-38000
Vanrija humicola
1.4.3.1
monomer
1 * 37000-38000
Bos taurus
1.4.3.1
More
three-dimensional structure by homology-modeling
Mus musculus
1.4.3.1
More
three-dimensional structure by homology-modeling
Sus scrofa
Cofactor
EC Number
Cofactor
Commentary
Organism
Structure
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Bos taurus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO
Caenorhabditis elegans
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Homo sapiens
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Mus musculus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO
Ovis aries
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Rattus norvegicus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Sus scrofa
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Vanrija humicola
Application (protein specific)
EC Number
Application
Commentary
Organism
1.4.3.1
drug development
a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease
Homo sapiens
1.4.3.1
drug development
a DDO inhibitor that augments brain D-Asp levels can be a potent antipsychotic drug for the treatment of NMDA receptor-related disease
Mus musculus
Cloned(Commentary) (protein specific)
EC Number
Commentary
Organism
1.4.3.1
-
Vanrija humicola
1.4.3.1
from brain, expressed in Escherichia coli
Homo sapiens
1.4.3.1
from kidney, expressed in Escherichia coli
Bos taurus
1.4.3.1
from kidney, expressed in Escherichia coli
Mus musculus
1.4.3.1
from kidney, expressed in Escherichia coli
Sus scrofa
Cofactor (protein specific)
EC Number
Cofactor
Commentary
Organism
Structure
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Bos taurus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO
Caenorhabditis elegans
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Homo sapiens
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Mus musculus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO
Ovis aries
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Rattus norvegicus
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Sus scrofa
1.4.3.1
FAD
one molecule of FAD is noncovalently bound to one molecule of DDO, the enzyme contains a FAD-binding consensus sequence Gly-X-Gly-X-X-Gly
Vanrija humicola
Engineering (protein specific)
EC Number
Amino acid exchange
Commentary
Organism
1.4.3.1
additional information
intense D-Asp immunoreactivity is observed in the intermediate lobe of the pituitary gland of the DDO-deficient mice, phenotype of DDO-deficient mice, detailed overview
Mus musculus
1.4.3.1
R216X
activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg216 residue with other amino acid residues
Mus musculus
1.4.3.1
R237X
activities of mouse DDO against acidic D-amino acids are virtually extinguished or significantly reduced by replacements of the Arg237 residue with other amino acid residues
Mus musculus
1.4.3.1
S308G
the mutation results in lack of a side-chain OH group at position 308, and increases mutant enzyme catalytic efficiency against D-Asp and NMDA to about 7-10times higher than that of the wild-type enzyme. Moreover, the dissociation-constant value for FAD of this Gly-substitution mutant is significantly lower than that of the wild-type enzyme, suggesting that it has enhanced ability to bind to FAD
Mus musculus
Inhibitors (protein specific)
EC Number
Inhibitors
Commentary
Organism
Structure
1.4.3.1
malonate
-
Bos taurus
1.4.3.1
malonate
-
Caenorhabditis elegans
1.4.3.1
malonate
-
Homo sapiens
1.4.3.1
malonate
-
Mus musculus
1.4.3.1
malonate
-
Ovis aries
1.4.3.1
malonate
-
Rattus norvegicus
1.4.3.1
malonate
-
Sus scrofa
1.4.3.1
malonate
-
Vanrija humicola
1.4.3.1
meso-tartrate
-
Bos taurus
1.4.3.1
meso-tartrate
-
Caenorhabditis elegans
1.4.3.1
meso-tartrate
-
Homo sapiens
1.4.3.1
meso-tartrate
-
Mus musculus
1.4.3.1
meso-tartrate
-
Ovis aries
1.4.3.1
meso-tartrate
-
Rattus norvegicus
1.4.3.1
meso-tartrate
-
Sus scrofa
1.4.3.1
meso-tartrate
-
Vanrija humicola
1.4.3.1
thiolactomycin
-
Bos taurus
1.4.3.1
thiolactomycin
-
Caenorhabditis elegans
1.4.3.1
thiolactomycin
-
Homo sapiens
1.4.3.1
thiolactomycin
-
Mus musculus
1.4.3.1
thiolactomycin
-
Ovis aries
1.4.3.1
thiolactomycin
-
Rattus norvegicus
1.4.3.1
thiolactomycin
-
Sus scrofa
1.4.3.1
thiolactomycin
-
Vanrija humicola
Localization (protein specific)
EC Number
Localization
Commentary
Organism
GeneOntology No.
Textmining
1.4.3.1
axon
-
Rattus norvegicus
30424
-
1.4.3.1
cytoplasm
DDO-2
Caenorhabditis elegans
5737
-
1.4.3.1
extracellular
DDO-3
Caenorhabditis elegans
-
-
1.4.3.1
heterochromatin
in magnocellular neurons of the rat supraoptic nucleus, but not in other subcellular structures of the nucleus and soma, including the nucleoplasm and cytoplasm
Rattus norvegicus
792
-
1.4.3.1
nucleolus
in magnocellular neurons of the rat supraoptic nucleus
Rattus norvegicus
5730
-
1.4.3.1
peroxisome
-
Bos taurus
5777
-
1.4.3.1
peroxisome
DDO-1
Caenorhabditis elegans
5777
-
1.4.3.1
peroxisome
-
Homo sapiens
5777
-
1.4.3.1
peroxisome
-
Mus musculus
5777
-
1.4.3.1
peroxisome
-
Ovis aries
5777
-
1.4.3.1
peroxisome
-
Rattus norvegicus
5777
-
1.4.3.1
peroxisome
-
Sus scrofa
5777
-
Natural Substrates/ Products (Substrates) (protein specific)
EC Number
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
1.4.3.1
D-aspartate + H2O + O2
Mus musculus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Homo sapiens
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Rattus norvegicus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Sus scrofa
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Bos taurus
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Ovis aries
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Caenorhabditis elegans
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-aspartate + H2O + O2
Vanrija humicola
-
oxaloacetate + NH3 + H2O2
-
-
?
1.4.3.1
D-glutamate + H2O + O2
Caenorhabditis elegans
preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu
2-oxoglutarate + NH3 + H2O2
-
-
?
1.4.3.1
additional information
Caenorhabditis elegans
H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO
?
-
-
-
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Mus musculus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Homo sapiens
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Rattus norvegicus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Sus scrofa
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Bos taurus
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Ovis aries
-
oxaloacetate + methylamine + H2O2
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
Caenorhabditis elegans
-
oxaloacetate + methylamine + H2O2
-
-
?
Purification (Commentary) (protein specific)
EC Number
Commentary
Organism
1.4.3.1
recombinant enzyme
Vanrija humicola
1.4.3.1
recombinant enzyme from Escherichia coli
Bos taurus
1.4.3.1
recombinant enzyme from Escherichia coli
Homo sapiens
1.4.3.1
recombinant enzyme from Escherichia coli
Mus musculus
1.4.3.1
recombinant enzyme from Escherichia coli
Sus scrofa
Source Tissue (protein specific)
EC Number
Source Tissue
Commentary
Organism
Textmining
1.4.3.1
adrenal gland
adrenal cortex and adrenal medulla epinephrine cells
Mus musculus
-
1.4.3.1
adrenal gland
-
Rattus norvegicus
-
1.4.3.1
brain
cerebellar cortex Bergmann glia
Mus musculus
-
1.4.3.1
brain
embryonic, D-Asp initially emerges in the hindbrain and then spreads into the forebrain. Within nerve cells of the rat embryonic brain, D-Asp first occurs in the cell bodies of neuroblasts in the outer layer of the neuronal epithelium, and then it appears in the processes of the cells
Rattus norvegicus
-
1.4.3.1
cerebral cortex
relatively high enzyme expression just after birth, the content gradually decreases thereafter
Homo sapiens
-
1.4.3.1
cerebrum
relatively high enzyme expression just after birth, the content gradually decreases thereafter
Rattus norvegicus
-
1.4.3.1
follicular fluid
-
Homo sapiens
-
1.4.3.1
gastric juice
-
Homo sapiens
-
1.4.3.1
hippocampus
-
Mus musculus
-
1.4.3.1
hypothalamus
in the cell bodies of the neurons
Rattus norvegicus
-
1.4.3.1
kidney
-
Bos taurus
-
1.4.3.1
kidney
in Bowman's capsule, renal thin limbs of Henle's loop
Mus musculus
-
1.4.3.1
kidney
-
Ovis aries
-
1.4.3.1
kidney
-
Rattus norvegicus
-
1.4.3.1
kidney
-
Sus scrofa
-
1.4.3.1
Leydig cell
-
Mus musculus
-
1.4.3.1
liver
-
Homo sapiens
-
1.4.3.1
liver
-
Mus musculus
-
1.4.3.1
liver
-
Rattus norvegicus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Bos taurus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Homo sapiens
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Mus musculus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Ovis aries
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Rattus norvegicus
-
1.4.3.1
additional information
development-related patterns of D-Asp expression differ among various mammalian tissues, overview
Sus scrofa
-
1.4.3.1
neuron
primary cultured
Rattus norvegicus
-
1.4.3.1
pancreas
-
Rattus norvegicus
-
1.4.3.1
PC-12 cell
pheochromocytoma cells
Rattus norvegicus
-
1.4.3.1
pineal gland
D-Asp content in the adult rat pineal gland is very high, especially in the distal (caudal) region of the gland, little staining is found in the proximal (rostral) region
Rattus norvegicus
-
1.4.3.1
pinealocyte
-
Rattus norvegicus
-
1.4.3.1
pituitary gland
intermediate lobe
Mus musculus
-
1.4.3.1
pituitary gland
prolactin-producing cells in the anterior lobe and microglial cells in the posterior lobe, D-Asp immunoreactivity is observed specifically in prolactin-producing mammotrophs or in a closely related cell type
Rattus norvegicus
-
1.4.3.1
retina
-
Mus musculus
-
1.4.3.1
retina
-
Rattus norvegicus
-
1.4.3.1
salivary gland
-
Homo sapiens
-
1.4.3.1
salivary gland
-
Rattus norvegicus
-
1.4.3.1
spermatozoon
-
Homo sapiens
-
1.4.3.1
testis
-
Mus musculus
-
1.4.3.1
testis
-
Rattus norvegicus
-
1.4.3.1
testis
-
Sus scrofa
-
Substrates and Products (Substrate) (protein specific)
EC Number
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
1.4.3.1
D-aspartate + H2O + O2
-
711719
Mus musculus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Homo sapiens
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Rattus norvegicus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Sus scrofa
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Bos taurus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Ovis aries
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Caenorhabditis elegans
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
-
711719
Vanrija humicola
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Mus musculus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Homo sapiens
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Rattus norvegicus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Sus scrofa
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Bos taurus
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Ovis aries
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-aspartate + H2O + O2
in the first step of the reaction, which is the only enzymatic step of the whole reaction scheme, DDO catalyzes the dehydrogenation of a D-amino acid to generate the corresponding imino acid, coupled with the reduction of FAD. Subsequently, FAD reoxidizes spontaneously in the presence of O2, producing H2O2, while the imino acid nonenzymatically hydrolyzes to 2-oxo acid and NH3
711719
Caenorhabditis elegans
oxaloacetate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-glutamate + H2O + O2
preferred substrate
711719
Caenorhabditis elegans
2-oxoglutarate + NH3 + H2O2
-
-
-
?
1.4.3.1
D-glutamate + H2O + O2
preferred substrate. It is possible that excess amounts of D-Glu are as toxic for Caenorhabditis elegans as they are for the silkworm, and that Caenorhabditis elegans needs DDOs to deaminate D-Glu and thereby neutralize the toxicity of diet-derived D-Glu
711719
Caenorhabditis elegans
2-oxoglutarate + NH3 + H2O2
-
-
-
?
1.4.3.1
additional information
H2O2 that is generated in the enzymatic reaction catalyzed by Caenorhabditis elegans DDO-1 and DDO-2 is conceivably degraded by catalase colocalized with each DDO
711719
Caenorhabditis elegans
?
-
-
-
-
1.4.3.1
additional information
Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding
711719
Sus scrofa
?
-
-
-
-
1.4.3.1
additional information
Arg216, Tyr223, Arg237, Arg278, and Ser308 residues of DDO are presumed to be important in catalytic activity and substrate binding, overview
711719
Mus musculus
?
-
-
-
-
1.4.3.1
additional information
in contrast to the mammalian and Cryptococcus humicola DDOs, the three kinds of Caenorhabditis elegans DDOs show relatively higher catalytic efficiency against D-Glu than against D-Asp and NMDA
711719
Caenorhabditis elegans
?
-
-
-
-
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Mus musculus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Homo sapiens
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Rattus norvegicus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Sus scrofa
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Bos taurus
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Ovis aries
oxaloacetate + methylamine + H2O2
-
-
-
?
1.4.3.1
N-methyl-D-aspartate + H2O + O2
-
711719
Caenorhabditis elegans
oxaloacetate + methylamine + H2O2
-
-
-
?
Subunits (protein specific)
EC Number
Subunits
Commentary
Organism
1.4.3.1
?
x * 37000-38000
Homo sapiens
1.4.3.1
?
x * 37000-38000
Mus musculus
1.4.3.1
?
x * 37000-38000
Rattus norvegicus
1.4.3.1
homotetramer
4 * 37000-38000
Sus scrofa
1.4.3.1
homotetramer
4 * 37000-38000
Vanrija humicola
1.4.3.1
monomer
1 * 37000-38000
Bos taurus
1.4.3.1
More
three-dimensional structure by homology-modeling
Mus musculus
1.4.3.1
More
three-dimensional structure by homology-modeling
Sus scrofa
General Information
EC Number
General Information
Commentary
Organism
1.4.3.1
additional information
melatonin secretion and D-Asp release from pinealocytes are enhanced by stimulation with noradrenaline, after which the melatonin secretion is suppressed by the action of the released D-Asp on the cells. Through this negative feedback mechanism, noradrenaline may regulate its ability to induce melatonin secretion in the pineal gland
Rattus norvegicus
1.4.3.1
physiological function
relevance of D-Asp and DDO to NMDA receptor-related disease, D-Asp protects against sensorimotor-gating deficits, which are observed in schizophrenic patients, overview. D-Asp is important in the development and neurogenesis of the brain
Homo sapiens
1.4.3.1
physiological function
relevance of D-Asp and DDO to NMDA receptor-related disease, overview. Phenotype of DDO-deficient mice, DDO-deficient mice display significant deficits in prepulse inhibition, and exhibit reduced immobility time in the Porsolt forced-swim test, a model of depression, suggesting that the genetic ablation of DDO has a specific antidepressant action, overview
Mus musculus
1.4.3.1
physiological function
D-Asp is important in the development and neurogenesis of the brain. D-Asp plays a regulatory role in the synthesis and secretion of prolactin in the anterior lobe of the pituitary gland. D-Asp directly interacts with DNA and/or acts on nuclear protein(s) involved in the regulation of gene transcription, through which d-Asp controls gene expression in the hypothalamo-neurohypophyseal system
Rattus norvegicus
General Information (protein specific)
EC Number
General Information
Commentary
Organism
1.4.3.1
additional information
melatonin secretion and D-Asp release from pinealocytes are enhanced by stimulation with noradrenaline, after which the melatonin secretion is suppressed by the action of the released D-Asp on the cells. Through this negative feedback mechanism, noradrenaline may regulate its ability to induce melatonin secretion in the pineal gland
Rattus norvegicus
1.4.3.1
physiological function
relevance of D-Asp and DDO to NMDA receptor-related disease, D-Asp protects against sensorimotor-gating deficits, which are observed in schizophrenic patients, overview. D-Asp is important in the development and neurogenesis of the brain
Homo sapiens
1.4.3.1
physiological function
relevance of D-Asp and DDO to NMDA receptor-related disease, overview. Phenotype of DDO-deficient mice, DDO-deficient mice display significant deficits in prepulse inhibition, and exhibit reduced immobility time in the Porsolt forced-swim test, a model of depression, suggesting that the genetic ablation of DDO has a specific antidepressant action, overview
Mus musculus
1.4.3.1
physiological function
D-Asp is important in the development and neurogenesis of the brain. D-Asp plays a regulatory role in the synthesis and secretion of prolactin in the anterior lobe of the pituitary gland. D-Asp directly interacts with DNA and/or acts on nuclear protein(s) involved in the regulation of gene transcription, through which d-Asp controls gene expression in the hypothalamo-neurohypophyseal system
Rattus norvegicus