Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Fukunaga, R.; Yokoyama, S.
    Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus (2007), J. Mol. Biol., 370, 128-141.
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.5.1.73 SepCysS1, overexpression in Escherichia coli strain BL21(DE3), expression of selenomethionine-labeled SepCysS1 in Escherichia coli strain B834 Archaeoglobus fulgidus

Crystallization (Commentary)

EC Number Crystallization (Comment) Organism
2.5.1.73 purified recombinant wild-type SepVysS1 and selenomethionine-labeled SepCysS1, hanging-drop vapor diffusion method, 0.001 ml protein solution is mixed with 0.001 ml reservoir solution containing 80 mM sodium acetate buffer, pH 4.4, 160 mM NaCl, and 1.00 M ammonium sulfate, 20°C, equilibration against 0.5 ml reservoir solution, cryoprotection by 25% v/v glycerol, X-ray diffraction structure determination and analysis at 2.4-3.2 A resolution, modeling Archaeoglobus fulgidus

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
2.5.1.73 sulfate is bound in the proximity of PLP by the side-chains of the conserved Arg79, His103, and Tyr104 residues, the PLP-bound active site is located deep within the large, basic cleft for recognizing Sep-tRNACys Archaeoglobus fulgidus

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.5.1.73 additional information Archaeoglobus fulgidus two-step Cys-tRNACys formation: in organisms like Archaeoglobus fulgidus lacking a canonical cysteinyl-tRNA synthetase for the direct Cys-tRNACys formation, Cys-tRNACys is produced by the indirect pathway, in which the non-canonical O-phosphoseryl-tRNA synthetase, SepRS, ligates the non-canonical amino acid O-phosphoserine, Sep, to tRNACys, and the Sep-tRNA:Cys-tRNA synthase converts the produced Sep-tRNACys to Cys-tRNACys, overview, the SepRS/SepCysS pathway is the sole route for cysteine biosynthesis in the organism ?
-
?
2.5.1.73 O-phospho-L-seryl-tRNACys + sulfate Archaeoglobus fulgidus the in vivo sulfur donor is not determined L-cysteinyl-tRNACys + phosphate
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.5.1.73 Archaeoglobus fulgidus O30207 SepCysS1; SepCysS1
-
6.1.1.16 no activity in Archaeoglobus fulgidus
-
-
-

Purification (Commentary)

EC Number Purification (Comment) Organism
2.5.1.73 recombinant SepCysS1 from Escherichia coli strain BL21(DE3) by anion exchange chromatography and affinity chromatography on a heparin resin, recombinant selenomethionine-labeled SepCysS1 from Escherichia coli strain B834 Archaeoglobus fulgidus

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.5.1.73 additional information two-step Cys-tRNACys formation: in organisms like Archaeoglobus fulgidus lacking a canonical cysteinyl-tRNA synthetase for the direct Cys-tRNACys formation, Cys-tRNACys is produced by the indirect pathway, in which the non-canonical O-phosphoseryl-tRNA synthetase, SepRS, ligates the non-canonical amino acid O-phosphoserine, Sep, to tRNACys, and the Sep-tRNA:Cys-tRNA synthase converts the produced Sep-tRNACys to Cys-tRNACys, overview, the SepRS/SepCysS pathway is the sole route for cysteine biosynthesis in the organism Archaeoglobus fulgidus ?
-
?
2.5.1.73 additional information the active site contains an internal aldimine Lys209-PLP and the sulfate ion, SepCysS should not bind Sep-tRNASec and discriminate tRNACys from tRNASec on the basis of the differences in the length of the T-arms, or SepCysS recognizes the discriminator sequence, which is Ura73 in tRNACys and Gua73 in tRNASec, overview Archaeoglobus fulgidus ?
-
?
2.5.1.73 O-phospho-L-seryl-tRNACys + sulfate the in vivo sulfur donor is not determined Archaeoglobus fulgidus L-cysteinyl-tRNACys + phosphate
-
?
2.5.1.73 O-phospho-L-seryl-tRNACys + sulfide modeling of tRNA binding, overview, sulfide, persulfide, and thiosulfate, but not cysteine, can function as sulfur donor in vitro, the active site is located deep within the large, basic cleft to accommodate Sep-tRNACys, binding modeling of Sep-tRNACys, overview, possibly the side-chain of a Cys residue in SepCysS becomes persulfided as a sulfur transfer intermediate state Archaeoglobus fulgidus L-cysteinyl-tRNACys + phosphate
-
?

Subunits

EC Number Subunits Comment Organism
2.5.1.73 dimer the active site is located near the dimer interface, crystal structure analysis, overview Archaeoglobus fulgidus
2.5.1.73 More amino acid residue conservation mapping on the basis of the surface electrostatic potential, overview, construction of a SepRS-tRNACys-SepCysS ternary complex model, in the ternary complex the phosphoserylated 3'-terminus of tRNACys can possibly be transferred directly from SepRS to SepCysS, for conversion to the cysteinylated form, overview Archaeoglobus fulgidus

Synonyms

EC Number Synonyms Comment Organism
2.5.1.73 SepCysS
-
Archaeoglobus fulgidus

Cofactor

EC Number Cofactor Comment Organism Structure
2.5.1.73 pyridoxal 5'-phosphate dependent on, pyridoxal 5'-phosphate is covalently bound to the side-chain of the conserved Lys209 at the active site Archaeoglobus fulgidus