BRENDA - Enzyme Database
show all sequences of 3.5.4.12

A T4-phage deoxycytidylate deaminase mutant that no longer requires deoxycytidine 5'-triphosphate for activation

Keefe, R.G.; Maley, G.F.; Saxl, R.L.; Maley, F.; J. Biol. Chem. 275, 12598-12602 (2000)

Data extracted from this reference:

Activating Compound
Activating Compound
Commentary
Organism
Structure
5-hydroxymethyl-dCTP
natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Enterobacteria phage T2
5-hydroxymethyl-dCTP
natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Enterobacteria phage T6
5-hydroxymethyl-dCTP
natural activator, required for activity; natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Escherichia virus T4
dCTP
positive allosteric effector; severalfold activation, activation requires presence of Mg2+
Enterobacteria phage T2
dCTP
positive allosteric effector; severalfold activation, activation requires presence of Mg2+
Enterobacteria phage T6
dCTP
hexameric form of enzyme is activated by dCTP, while the dimer is not; mutants R115E and R115Q: dCTP not required. R115Q: slight, 30-40% activation by 0.02 mM dCTP; positive allosteric effector; required for activity; severalfold activation, activation requires presence of Mg2+; wild-type, dCTP required for activity, no activity in absence of dCTP and Mg2+
Escherichia virus T4
additional information
the phage dCMP deaminase expression is increased upon infection of Escherichia coli
Escherichia virus T4
Cloned(Commentary)
Commentary
Organism
expression of wild-type and mutant enzymes in Escherichia coli
Escherichia virus T4
Engineering
Amino acid exchange
Commentary
Organism
F112A
molecular weight analysis using HPLC gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, F112A varies from hexamer to dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme
Escherichia virus T4
R115E
mutant enzyme active in the absence of dCTP and Mg2+, little if any activation by dCTP, possessing turnover number or kcat that is about 15% that of wild-type enzyme, specific activity about 40-50% of wild-type enzyme. Molecular weight analysis using HPLC gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, R115E a dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme, but no longer requires deoxycytidine 5-triphosphate for activation in contrast to the wild-type enzyme
Escherichia virus T4
R115Q
mutant enzyme active in the absence of dCTP and Mg2+, possessing turnover number or kcat that is about 15% that of wild-type enzyme, specific activity about 40-50% of wild-type enzyme. Molecular weight analysis using HPLC size gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, R115Q varies from hexamer to dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme, but no longer requires deoxycytidine 5-triphosphate for activation in contrast to the wild-type enzyme
Escherichia virus T4
General Stability
General Stability
Organism
2-mercaptoethanol stabilizes
Escherichia virus T4
2-mercaptoethanol stabilizes
Enterobacteria phage T2
EDTA: denaturation, EDTA removes the two resident Zn2+ atoms /subunit
Escherichia virus T4
guanidine-HCl, 6 M, denaturation, complete restoration of activity on removal of denaturant by dilution or dialysis
Escherichia virus T4
Inhibitors
Inhibitors
Commentary
Organism
Structure
dTTP
allosteric inhibitor
Enterobacteria phage T2
dTTP
allosteric inhibitor; wild-type, 0.1 mM dTTP: 20% inhibition, mutants R115E and R115Q: 0.1 mM dTTP: no inhibition. 0.3 mM dTTP: wild-type 90% inhibition, mutants R115E and R115Q: 30% inhibition
Escherichia virus T4
dTTP
allosteric inhibitor
Enterobacteria phage T6
EDTA
-
Escherichia virus T4
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
-
Enterobacteria phage T2
additional information
-
additional information
kinetic analysis, data and characterization of wild-type and mutants R115E, R115Q and F112A
Escherichia virus T4
0.021
-
dCMP
recombinant wild-type enzyme, pH 8.0, 30°C; wild-type, presence of dCTP and Mg2+
Escherichia virus T4
0.127
-
dCMP
R115Q, absence of dCTP; recombinant mutant R115Q, pH 8.0, 30°C
Escherichia virus T4
0.137
-
dCMP
R115E, absence of dCTP; recombinant mutant R115E, pH 8.0, 30°C
Escherichia virus T4
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
required for activation by dCTP and for inhibition by dTTP
Enterobacteria phage T2
Mg2+
required for activation by dCTP and for inhibition by dTTP
Enterobacteria phage T6
Mg2+
; required for activation by dCTP and for inhibition by dTTP
Escherichia virus T4
Zn2+
two resident Zn2+ atoms /subunit
Escherichia virus T4
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
21200
-
2 * 21200, mutant R115E: dimer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; 6 * 21200, wild-type, particularly in the presence of dCTP: hexamer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS
Escherichia virus T4
38200
113000
recombinant mutant F112A, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
39800
118000
recombinant mutant R115Q, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
41600
45400
recombinant mutant R115E, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
44300
-
R115E, HPLC gel filtration
Escherichia virus T4
110000
122000
recombinant wild-type enzyme, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
111900
-
F112A, HPLC gel filtration
Escherichia virus T4
124500
-
R115Q, HPLC gel filtration
Escherichia virus T4
127000
-
wild-type, HPLC gel filtration
Escherichia virus T4
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
dCMP + H2O
Escherichia virus T4
-
dUMP + NH3
-
-
?
dCMP + H2O
Enterobacteria phage T2
-
dUMP + NH3
-
Enterobacteria phage T2
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Enterobacteria phage T2
-
T2-, T4-, and T6-phage induced enzyme in Escherichia coli
-
Enterobacteria phage T6
-
T2-, T4-, and T6-phage induced enzyme in Escherichia coli
-
Escherichia virus T4
-
; T2-, T4-, and T6-phage induced enzyme in Escherichia coli; T4-phage infected Escherichia coli; wild-type and R115E and R115Q, mutant enzymes that no longer requires dCTP for activation, and mutant F112A
-
Purification (Commentary)
Commentary
Organism
recombinant wild-type and mutant enzymes from Escherichia coli; wild-type and mutants R115E, R115Q and F112A
Escherichia virus T4
Reaction
Reaction
Commentary
Organism
dCMP + H2O = dUMP + NH3
highly regulated allosteric enzyme; regulation, allosteric end-product regulation
Enterobacteria phage T2
dCMP + H2O = dUMP + NH3
highly regulated allosteric enzyme; regulation, allosteric end-product regulation
Escherichia virus T4
dCMP + H2O = dUMP + NH3
highly regulated allosteric enzyme; regulation, allosteric end-product regulation
Enterobacteria phage T6
Renatured (Commentary)
Commentary
Organism
after denaturation with EDTA, mutants R115E and R115Q restored 54% and 60% of original activities, wild-type enzyme only marginally restored; after treatment with guanidine-HCl, 6 M, complete reactivation on removal of denaturant by dilution or dialysis
Escherichia virus T4
Specific Activity [micromol/min/mg]
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
additional information
-
mutants R115E and R115Q possessing specific activity about 40-50% of wild-type enzyme
Escherichia virus T4
90
100
mutant R115E
Escherichia virus T4
121
-
mutant R115Q
Escherichia virus T4
220
-
wild-type
Escherichia virus T4
Storage Stability
Storage Stability
Organism
-40°C, solid ammonium sulfate to 80% saturation, stable for longer periods of storage
Escherichia virus T4
0-4°C, 0.1 M 2-mercaptoethanol, stable for extended periods
Escherichia virus T4
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
dCMP + H2O
-
289015
Escherichia virus T4
dUMP + NH3
-
-
-
?
dCMP + H2O
-
289015
Escherichia virus T4
dUMP + NH3
-
289015
Escherichia virus T4
?
dCMP + H2O
-
289015
Enterobacteria phage T2
dUMP + NH3
-
289015
Enterobacteria phage T2
?
dCMP + H2O
-
289015
Enterobacteria phage T6
dUMP + NH3
-
289015
Enterobacteria phage T6
?
Subunits
Subunits
Commentary
Organism
dimer
2 * 21200, mutant R115E: dimer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; mutants R115Q and R115E, mutant F112A changes between dimeric and hexameric forms
Escherichia virus T4
hexamer
6 * 21200, wild-type, particularly in the presence of dCTP: hexamer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; 6 identical subunits; wild-type enzyme, mutant F112A changes between dimeric and hexameric forms
Escherichia virus T4
hexamer
6 identical subunits
Enterobacteria phage T2
hexamer
6 identical subunits
Enterobacteria phage T6
More
hexameric form of enzyme is activated by dCTP, while the dimer is not
Escherichia virus T4
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
30
-
assay at
Escherichia virus T4
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
mutants R115E and R115Q possessing turnover number or kcat that is about 15% that of wild-type enzyme
Escherichia virus T4
69
-
dCMP
mutant R115E, pH 8.0, 30°C; R115E
Escherichia virus T4
85
-
dCMP
mutant R115Q, pH 8.0, 30°C; R115Q dimer
Escherichia virus T4
255
-
dCMP
R115Q hexamer
Escherichia virus T4
466
-
dCMP
wild-type; wild-type enzyme, pH 8.0, 30°C
Escherichia virus T4
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Enterobacteria phage T2
8
-
assay at
Escherichia virus T4
Activating Compound (protein specific)
Activating Compound
Commentary
Organism
Structure
5-hydroxymethyl-dCTP
natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Enterobacteria phage T2
5-hydroxymethyl-dCTP
natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Enterobacteria phage T6
5-hydroxymethyl-dCTP
natural activator, required for activity; natural positive allosteric effector, enzyme is much more effectively regulated by its natural effector, 5-hydroxymethyl-dCTP, than by dCTP, binding of 5-hydroxymethyl-dCTP is much more pH dependent than dCTP
Escherichia virus T4
dCTP
positive allosteric effector; severalfold activation, activation requires presence of Mg2+
Enterobacteria phage T2
dCTP
positive allosteric effector; severalfold activation, activation requires presence of Mg2+
Enterobacteria phage T6
dCTP
hexameric form of enzyme is activated by dCTP, while the dimer is not; mutants R115E and R115Q: dCTP not required. R115Q: slight, 30-40% activation by 0.02 mM dCTP; positive allosteric effector; required for activity; severalfold activation, activation requires presence of Mg2+; wild-type, dCTP required for activity, no activity in absence of dCTP and Mg2+
Escherichia virus T4
additional information
the phage dCMP deaminase expression is increased upon infection of Escherichia coli
Escherichia virus T4
Cloned(Commentary) (protein specific)
Commentary
Organism
expression of wild-type and mutant enzymes in Escherichia coli
Escherichia virus T4
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
F112A
molecular weight analysis using HPLC gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, F112A varies from hexamer to dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme
Escherichia virus T4
R115E
mutant enzyme active in the absence of dCTP and Mg2+, little if any activation by dCTP, possessing turnover number or kcat that is about 15% that of wild-type enzyme, specific activity about 40-50% of wild-type enzyme. Molecular weight analysis using HPLC gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, R115E a dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme, but no longer requires deoxycytidine 5-triphosphate for activation in contrast to the wild-type enzyme
Escherichia virus T4
R115Q
mutant enzyme active in the absence of dCTP and Mg2+, possessing turnover number or kcat that is about 15% that of wild-type enzyme, specific activity about 40-50% of wild-type enzyme. Molecular weight analysis using HPLC size gel filtration in the presence of SDS and dCTP: wild-type is a hexamer, R115Q varies from hexamer to dimer; site-directed mutagenesis, the mutant enzyme shows reduced turnover and activity compared to the wild-type enzyme, but no longer requires deoxycytidine 5-triphosphate for activation in contrast to the wild-type enzyme
Escherichia virus T4
General Stability (protein specific)
General Stability
Organism
2-mercaptoethanol stabilizes
Escherichia virus T4
2-mercaptoethanol stabilizes
Enterobacteria phage T2
EDTA: denaturation, EDTA removes the two resident Zn2+ atoms /subunit
Escherichia virus T4
guanidine-HCl, 6 M, denaturation, complete restoration of activity on removal of denaturant by dilution or dialysis
Escherichia virus T4
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
dTTP
allosteric inhibitor
Enterobacteria phage T2
dTTP
allosteric inhibitor; wild-type, 0.1 mM dTTP: 20% inhibition, mutants R115E and R115Q: 0.1 mM dTTP: no inhibition. 0.3 mM dTTP: wild-type 90% inhibition, mutants R115E and R115Q: 30% inhibition
Escherichia virus T4
dTTP
allosteric inhibitor
Enterobacteria phage T6
EDTA
-
Escherichia virus T4
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
-
Enterobacteria phage T2
additional information
-
additional information
kinetic analysis, data and characterization of wild-type and mutants R115E, R115Q and F112A
Escherichia virus T4
0.021
-
dCMP
recombinant wild-type enzyme, pH 8.0, 30°C; wild-type, presence of dCTP and Mg2+
Escherichia virus T4
0.127
-
dCMP
R115Q, absence of dCTP; recombinant mutant R115Q, pH 8.0, 30°C
Escherichia virus T4
0.137
-
dCMP
R115E, absence of dCTP; recombinant mutant R115E, pH 8.0, 30°C
Escherichia virus T4
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
required for activation by dCTP and for inhibition by dTTP
Enterobacteria phage T2
Mg2+
required for activation by dCTP and for inhibition by dTTP
Enterobacteria phage T6
Mg2+
; required for activation by dCTP and for inhibition by dTTP
Escherichia virus T4
Zn2+
two resident Zn2+ atoms /subunit
Escherichia virus T4
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
21200
-
2 * 21200, mutant R115E: dimer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; 6 * 21200, wild-type, particularly in the presence of dCTP: hexamer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS
Escherichia virus T4
38200
113000
recombinant mutant F112A, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
39800
118000
recombinant mutant R115Q, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
41600
45400
recombinant mutant R115E, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
44300
-
R115E, HPLC gel filtration
Escherichia virus T4
110000
122000
recombinant wild-type enzyme, gel filtration, dependent on protein concentration, in presence and absence of fdCTP
Escherichia virus T4
111900
-
F112A, HPLC gel filtration
Escherichia virus T4
124500
-
R115Q, HPLC gel filtration
Escherichia virus T4
127000
-
wild-type, HPLC gel filtration
Escherichia virus T4
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
dCMP + H2O
Escherichia virus T4
-
dUMP + NH3
-
-
?
dCMP + H2O
Enterobacteria phage T2
-
dUMP + NH3
-
Enterobacteria phage T2
?
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant wild-type and mutant enzymes from Escherichia coli; wild-type and mutants R115E, R115Q and F112A
Escherichia virus T4
Renatured (Commentary) (protein specific)
Commentary
Organism
after denaturation with EDTA, mutants R115E and R115Q restored 54% and 60% of original activities, wild-type enzyme only marginally restored; after treatment with guanidine-HCl, 6 M, complete reactivation on removal of denaturant by dilution or dialysis
Escherichia virus T4
Specific Activity [micromol/min/mg] (protein specific)
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
additional information
-
mutants R115E and R115Q possessing specific activity about 40-50% of wild-type enzyme
Escherichia virus T4
90
100
mutant R115E
Escherichia virus T4
121
-
mutant R115Q
Escherichia virus T4
220
-
wild-type
Escherichia virus T4
Storage Stability (protein specific)
Storage Stability
Organism
-40°C, solid ammonium sulfate to 80% saturation, stable for longer periods of storage
Escherichia virus T4
0-4°C, 0.1 M 2-mercaptoethanol, stable for extended periods
Escherichia virus T4
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
dCMP + H2O
-
289015
Escherichia virus T4
dUMP + NH3
-
-
-
?
dCMP + H2O
-
289015
Escherichia virus T4
dUMP + NH3
-
289015
Escherichia virus T4
?
dCMP + H2O
-
289015
Enterobacteria phage T2
dUMP + NH3
-
289015
Enterobacteria phage T2
?
dCMP + H2O
-
289015
Enterobacteria phage T6
dUMP + NH3
-
289015
Enterobacteria phage T6
?
Subunits (protein specific)
Subunits
Commentary
Organism
dimer
2 * 21200, mutant R115E: dimer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; mutants R115Q and R115E, mutant F112A changes between dimeric and hexameric forms
Escherichia virus T4
hexamer
6 * 21200, wild-type, particularly in the presence of dCTP: hexamer, mutants R115Q and F112A varies from hexamers to dimers or something in between depending on protein concentration, HPLC gel filtration in the presence of SDS; 6 identical subunits; wild-type enzyme, mutant F112A changes between dimeric and hexameric forms
Escherichia virus T4
hexamer
6 identical subunits
Enterobacteria phage T2
hexamer
6 identical subunits
Enterobacteria phage T6
More
hexameric form of enzyme is activated by dCTP, while the dimer is not
Escherichia virus T4
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
30
-
assay at
Escherichia virus T4
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
mutants R115E and R115Q possessing turnover number or kcat that is about 15% that of wild-type enzyme
Escherichia virus T4
69
-
dCMP
mutant R115E, pH 8.0, 30°C; R115E
Escherichia virus T4
85
-
dCMP
mutant R115Q, pH 8.0, 30°C; R115Q dimer
Escherichia virus T4
255
-
dCMP
R115Q hexamer
Escherichia virus T4
466
-
dCMP
wild-type; wild-type enzyme, pH 8.0, 30°C
Escherichia virus T4
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
assay at
Enterobacteria phage T2
8
-
assay at
Escherichia virus T4
Other publictions for EC 3.5.4.12
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
734322
Marx
The first crystal structure of ...
Cyanophage S-TIM5
J. Biol. Chem.
290
682-690
2015
-
-
1
1
10
-
1
-
-
1
-
1
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
1
10
-
-
1
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
734401
Xu
STRIPE2 encodes a putative dCM ...
Oryza sativa
J. Genet. Genomics
41
539-548
2014
-
-
1
-
-
-
-
-
2
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
712083
Jansen
Deoxyuridine analog nucleotide ...
Homo sapiens
Fundam. Clin. Pharmacol.
25
172-185
2011
1
-
-
-
-
-
8
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
8
-
-
-
-
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
711628
Li
DNA mismatch repair (MMR)-depe ...
Homo sapiens
Br. J. Pharmacol.
158
679-692
2009
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688405
Hou
Crystal structures of Streptoc ...
Streptococcus mutans
J. Mol. Biol.
377
220-231
2008
1
-
1
1
-
-
1
-
-
5
-
1
-
2
-
-
1
-
-
-
-
-
2
2
1
-
-
-
1
-
-
-
-
-
-
1
-
1
-
1
-
-
-
1
-
-
-
5
-
1
-
-
-
1
-
-
-
-
2
2
1
-
-
-
1
-
-
-
-
-
-
-
-
-
686248
Liskay
Involvement of deoxycytidylate ...
Saccharomyces cerevisiae
Curr. Biol.
17
R755-R757
2007
-
-
-
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688732
Zhang
Chloroviruses encode a bifunct ...
Paramecium bursaria Chlorella virus 1
J. Virol.
81
7662-7671
2007
1
-
1
-
-
-
3
2
-
5
1
2
-
4
-
-
1
-
-
-
-
1
4
1
1
1
-
2
2
1
-
-
-
-
-
1
-
1
-
-
-
-
-
3
-
2
-
5
1
2
-
-
-
1
-
-
-
1
4
1
1
1
-
2
2
1
-
-
-
-
-
-
-
-
667587
Almog
Three-dimensional structure of ...
Escherichia virus T4
Biochemistry
43
13715-13723
2004
1
1
1
1
1
-
2
-
-
1
-
1
-
1
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
1
1
1
-
1
1
-
-
2
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
669680
Gribaudo
Human cytomegalovirus requires ...
Homo sapiens
J. Gen. Virol.
84
1437-1441
2003
1
-
-
-
-
-
-
-
-
-
-
2
-
3
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
670328
Liou
Assessment of the effect of ph ...
Homo sapiens
Mol. Pharmacol.
63
105-110
2003
-
-
-
-
-
-
10
1
-
1
-
1
-
3
-
-
1
-
-
1
-
-
4
-
-
-
-
-
1
-
-
-
6
-
-
-
-
-
-
-
-
-
-
10
6
1
-
1
-
1
-
-
-
1
-
1
-
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
667541
Cha
Modifications of deoxycytidine ...
Rattus norvegicus
Biochem. Pharmacol.
63
717-723
2002
1
-
-
-
-
-
1
4
-
-
-
1
-
1
-
-
-
-
-
3
1
-
2
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
4
-
-
-
1
-
-
-
-
-
3
1
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
668584
Jost
5-Methyldeoxycytidine monophos ...
Homo sapiens
FEBS Lett.
519
128-134
2002
1
-
-
-
-
-
1
1
-
1
-
3
-
2
-
-
1
-
-
2
-
-
5
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
1
-
3
-
-
-
1
-
2
-
-
5
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
289015
Keefe
A T4-phage deoxycytidylate dea ...
Enterobacteria phage T2, Enterobacteria phage T6, Escherichia virus T4
J. Biol. Chem.
275
12598-12602
2000
7
-
1
-
3
4
4
5
-
4
9
2
-
4
-
-
1
3
1
-
4
2
4
5
1
-
-
5
2
-
-
-
-
-
-
7
-
1
-
-
3
4
-
4
-
5
-
4
9
2
-
-
-
1
1
-
4
2
4
5
1
-
-
5
2
-
-
-
-
-
-
-
-
-
289014
Nucci
Interaction of the high-affini ...
Equus asinus
Arch. Biochem. Biophys.
310
49-53
1994
2
1
-
-
-
-
3
1
-
-
-
1
-
1
-
-
1
1
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
3
-
1
-
-
-
1
-
-
-
1
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289017
Moore
Identification of a site neces ...
Escherichia virus T4, Homo sapiens
Biochemistry
33
2104-2112
1994
3
-
2
-
1
-
6
-
-
1
-
2
-
2
-
-
1
2
-
-
-
-
4
2
2
-
-
-
-
-
-
-
-
-
-
3
-
2
-
-
1
-
-
6
-
-
-
1
-
2
-
-
-
1
-
-
-
-
4
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
289018
Maley
Properties of an affinity-colu ...
Homo sapiens
Biochim. Biophys. Acta
1162
161-170
1993
2
-
1
-
-
5
11
-
-
7
2
1
-
3
-
-
1
1
-
1
1
1
10
1
1
-
-
1
2
-
-
-
-
-
-
2
-
1
-
-
-
5
-
11
-
-
-
7
2
1
-
-
-
1
-
1
1
1
10
1
1
-
-
1
2
-
-
-
-
-
-
-
-
-
289016
Xu
Modulation of deoxycytidylate ...
Homo sapiens
Biochem. Pharmacol.
44
1819-1827
1992
1
1
-
-
-
-
7
-
-
-
-
2
-
2
-
-
1
1
-
3
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
7
-
-
-
-
-
2
-
-
-
1
-
3
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289012
Nucci
Allosteric modifier and substr ...
Equus asinus
Arch. Biochem. Biophys.
289
19-25
1991
2
-
-
-
-
1
4
1
-
-
2
1
-
3
-
-
1
1
-
3
1
1
2
1
1
-
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
4
-
1
-
-
2
1
-
-
-
1
-
3
1
1
2
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
289013
Whitehead
Hill coefficient ratios give b ...
Equus asinus
Arch. Biochem. Biophys.
289
12-18
1991
2
-
-
-
-
-
2
1
-
-
-
1
-
1
-
-
1
1
-
1
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
1
-
1
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
289019
Riva
-
Correlation between deoxycytid ...
Homo sapiens
J. Cell. Pharmacol.
1
79-85
1990
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289020
Maley
A tale of two enzymes, deoxycy ...
Bacillus subtilis, Enterobacteria phage T2, Enterobacteria phage T6, Equus asinus, Escherichia virus T4, Gallus gallus, Herpes simplex virus, Homo sapiens, Macaca mulatta polyomavirus 1, no activity in Escherichia coli, no activity in Salmonella typhimurium, Polyomavirus sp., Rattus norvegicus, Saccharomyces cerevisiae, Sea urchin
Prog. Nucleic Acid Res. Mol. Biol.
39
49-80
1990
10
3
1
1
-
6
8
8
-
-
1
28
-
15
-
-
2
8
-
20
1
-
70
7
2
-
-
-
-
-
-
-
-
-
-
10
3
1
-
1
-
6
-
8
-
8
-
-
1
28
-
-
-
2
-
20
1
-
70
7
2
-
-
-
-
-
-
-
-
-
-
-
-
-
288997
Maley
Probing the infra-structure of ...
Enterobacteria phage T2, Gallus gallus
Adv. Enzyme Regul.
22
413-430
1984
3
-
-
1
-
-
-
2
-
-
-
8
-
5
-
-
1
2
-
1
-
-
10
2
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
1
-
-
-
-
-
2
-
-
-
8
-
-
-
1
-
1
-
-
10
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289000
McIntosh
Isolation of a Saccharomyces c ...
no activity in Escherichia coli, no activity in Salmonella typhimurium, Saccharomyces cerevisiae
J. Bacteriol.
158
644-649
1984
1
-
-
-
-
-
-
2
-
1
-
1
-
5
-
-
1
-
-
-
-
1
9
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
1
-
1
-
-
-
1
-
-
-
1
9
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
209853
Neale
Enzymes of pyrimidine deoxyrib ...
Mycoplasma mycoides
J. Bacteriol.
156
1001-1005
1983
1
-
-
-
-
1
1
2
-
-
-
1
-
3
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
1
-
2
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
289002
Mastrantonio
Analysis of competition for su ...
Equus asinus
Eur. J. Biochem.
137
421-427
1983
2
-
-
-
-
-
3
3
-
-
1
1
-
2
-
-
-
1
-
2
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
3
-
3
-
-
1
1
-
-
-
-
-
2
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289003
Raia
Reversal of the effect of the ...
Equus asinus
J. Mol. Biol.
157
557-570
1982
5
-
-
-
-
1
8
2
-
-
1
1
-
1
-
-
1
1
-
1
3
-
15
1
1
-
-
-
1
-
-
-
-
-
-
5
-
-
-
-
-
1
-
8
-
2
-
-
1
1
-
-
-
1
-
1
3
-
15
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
288999
Ellims
Deoxycytidylate deaminase. Pur ...
Homo sapiens
J. Biol. Chem.
256
6335-6340
1981
7
-
-
-
-
3
16
1
-
4
2
2
-
2
-
-
1
1
-
2
1
1
8
1
1
-
-
-
3
-
-
-
-
-
-
7
-
-
-
-
-
3
-
16
-
1
-
4
2
2
-
-
-
1
-
2
1
1
8
1
1
-
-
-
3
-
-
-
-
-
-
-
-
-
288998
Nucci
Freezing of dCMP aminohydrolas ...
Equus asinus
J. Mol. Biol.
124
133-145
1978
2
-
-
-
-
-
3
1
-
1
2
1
-
1
-
-
1
1
-
1
2
-
6
1
1
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
3
-
1
-
1
2
1
-
-
-
1
-
1
2
-
6
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
289004
Maley
Deoxycytidylate deaminase from ...
Enterobacteria phage T2, no activity in Escherichia coli
Methods Enzymol.
51
412-418
1978
2
-
-
-
-
3
1
4
-
4
1
2
-
3
-
-
1
1
-
-
1
1
12
1
-
-
1
-
3
-
-
-
-
-
-
2
-
-
-
-
-
3
-
1
-
4
-
4
1
2
-
-
-
1
-
-
1
1
12
1
-
-
1
-
3
-
-
-
-
-
-
-
-
-
289005
Mollgaard
Deoxycytidylate deaminase from ...
Bacillusphage phiE, Bacillus subtilis, Bacillus subtilis ED40, bacteriophage SP8, no activity in Escherichia coli, no activity in Salmonella typhimurium
J. Biol. Chem.
253
3536-3542
1978
9
-
-
-
-
4
2
2
-
10
1
2
-
7
-
-
1
1
-
-
1
3
12
-
1
-
2
-
1
1
-
-
-
-
-
9
-
-
-
-
-
4
-
2
-
2
-
10
1
2
-
-
-
1
-
-
1
3
12
-
1
-
2
-
1
1
-
-
-
-
-
-
-
-
289006
Dosseva.I.M.; Tomov
-
Stabilizing effect of ethylene ...
Mus musculus
Dokl. Bolg. Akad. Nauk
28
241-244
1975
-
-
-
-
-
5
-
-
-
-
-
1
-
1
-
-
1
1
-
-
-
-
2
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
289007
Rolton
Deoxycytidylate deaminase. Evi ...
Cricetinae, Herpes simplex virus
Biochem. J.
143
403-409
1974
6
-
-
-
-
3
6
4
-
2
-
2
-
2
-
-
2
-
-
2
-
-
4
-
2
-
4
-
2
-
-
-
-
-
-
6
-
-
-
-
-
3
-
6
-
4
-
2
-
2
-
-
-
2
-
2
-
-
4
-
2
-
4
-
2
-
-
-
-
-
-
-
-
-
289008
Rolton
Deoxycytidylate deaminase. Pro ...
Cricetinae
Biochem. J.
141
211-217
1974
1
-
-
-
-
3
2
1
-
3
2
1
-
1
-
-
1
1
-
2
1
2
4
-
1
-
2
-
1
1
-
1
-
-
-
1
-
-
1
-
-
3
-
2
-
1
-
3
2
1
-
-
-
1
-
2
1
2
4
-
1
-
2
-
1
1
-
-
-
-
-
-
-
-
289009
Maley
T2r+ bacteriophage-induced enz ...
Enterobacteria phage T2, Escherichia virus T4, Gallus gallus
J. Biol. Chem.
247
931-939
1972
5
-
-
-
-
2
3
4
-
-
1
3
-
3
-
-
2
3
-
1
1
2
11
3
2
-
-
-
4
-
-
-
-
-
-
5
-
-
-
-
-
2
-
3
-
4
-
-
1
3
-
-
-
2
-
1
1
2
11
3
2
-
-
-
4
-
-
-
-
-
-
-
-
-
289010
Maley
T2r+ bacteriophage-induced enz ...
Enterobacteria phage T2, Gallus gallus
J. Biol. Chem.
247
940-945
1972
3
-
-
-
-
2
3
-
-
-
2
2
-
2
-
-
-
2
1
1
-
-
4
2
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
2
-
3
-
-
-
-
2
2
-
-
-
-
1
1
-
-
4
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
289011
Sergott
On the regulation of a bacteri ...
Lactobacillus acidophilus, Staphylococcus aureus
J. Biol. Chem.
246
7755-7758
1971
4
-
-
-
-
1
6
-
-
-
-
2
-
2
-
-
2
2
-
-
1
1
4
-
1
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
-
6
-
-
-
-
-
2
-
-
-
2
-
-
1
1
4
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-