Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 3.5.2.B2 extracted from

  • Zhu, S.; Zheng, G.
    Dynamic kinetic resolution of Vince lactam catalyzed by gamma-lactamases a mini-review (2018), J. Ind. Microbiol. Biotechnol., 45, 1017-1031 .
    View publication on PubMed

Application

Application Comment Organism
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Escherichia coli
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Bradyrhizobium japonicum
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Pseudomonas fluorescens
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Delftia acidovorans
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Rhodococcus erythropolis
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Burkholderia cepacia
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Saccharolobus solfataricus
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Ralstonia solanacearum
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Rhodococcus globerulus
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Aeropyrum pernix
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Nocardia farcinica
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Delftia sp.
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Microbacterium hydrocarbonoxydans
drug development the use of gamma-lactamase as a biocatalyst offers an attractive and environmentally friendly approach for the synthesis of a broad range of carbocyclic nucleoside drugs. The enzyme can be used for enzymatic kinetic resolution of racemic Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) in the industry. Optically pure enantiomers and their hydrolytic products are widely employed as key chemical intermediates for developing a wide range of carbocyclic nucleoside medicines, including US FDA-approved drugs peramivir and abacavir Pseudomonas granadensis

Organism

Organism UniProt Comment Textmining
Aeropyrum pernix
-
-
-
Bradyrhizobium japonicum
-
-
-
Bradyrhizobium japonicum USDA 6
-
-
-
Burkholderia cepacia
-
-
-
Delftia acidovorans
-
-
-
Delftia sp.
-
-
-
Delftia sp. CGMCC 5755
-
-
-
Escherichia coli
-
-
-
Microbacterium hydrocarbonoxydans
-
-
-
Nocardia farcinica
-
-
-
Pseudomonas fluorescens
-
-
-
Pseudomonas fluorescens ENZA 22
-
-
-
Pseudomonas granadensis
-
-
-
Pseudomonas granadensis B6
-
-
-
Ralstonia solanacearum
-
-
-
Ralstonia solanacearum ENZA 20
-
-
-
Rhodococcus erythropolis
-
-
-
Rhodococcus erythropolis PR4
-
-
-
Rhodococcus globerulus
-
-
-
Saccharolobus solfataricus
-
-
-