BRENDA - Enzyme Database
show all sequences of 3.5.1.54

Structure and function of allophanate hydrolase

Fan, C.; Li, Z.; Yin, H.; Xiang, S.; J. Biol. Chem. 288, 21422-21432 (2013)

Data extracted from this reference:

Cloned(Commentary)
Cloned (Commentary)
Organism
recombinant expression of wild-type and mutant His-tagged SeMet-substituted enzymes in Escherichia coli strain BL21 Star(DE3)
Kluyveromyces lactis
Crystallization (Commentary)
Crystallization (Commentary)
Organism
purified recombinant wild-type and mutant His-tagged SeMet-substituted enzymes, sitting drop vapour diffusion method, mixing of 10 mg/ml protein in 20 mM Tris/HCl, pH 7.5, 200 mM NaCl, 2-10 mM DTT, with reservoir containing 16% PEG 8000, 20% glycerol, and 0.04 M potassium phosphate, and 100 mM sodium/potassium tartrate, 20C, X-ray diffraction structure determination and analysis at 2.5-2.6 A resolution, molecular replacement
Kluyveromyces lactis
Engineering
Protein Variants
Commentary
Organism
G559E/G572E
site-directed mutagenesis, crystal structure analysis, the mutant shows 14fold increaed Km for allophanate, and reduced substrate binding at the N-domain active site, but is catalytically active
Kluyveromyces lactis
additional information
generation of isolated domains
Kluyveromyces lactis
S177A
site-directed mutagenesis, crystal structure analysis
Kluyveromyces lactis
Organism
Organism
UniProt
Commentary
Textmining
Kluyveromyces lactis
Q6CP22
-
-
Purification (Commentary)
Purification (Commentary)
Organism
recombinant wild-type and mutant His-tagged SeMet-substituted enzymes from Escherichia coli strain BL21 Star(DE3) by nickel affinity chromatography and gel filtration
Kluyveromyces lactis
Reaction
Reaction
Commentary
Organism
Reaction ID
urea-1-carboxylate + H2O = 2 CO2 + 2 NH3
two-step reaction catalytic mechanism of the C-domain, overview. The C-domain probably catalyzes a distinct form of decarboxylation reaction
Kluyveromyces lactis
Subunits
Subunits
Commentary
Organism
dimer
enzyme domain architecture, overview. Both the N- and the C-domains require dimerization for their optimal activities
Kluyveromyces lactis
Cloned(Commentary) (protein specific)
Commentary
Organism
recombinant expression of wild-type and mutant His-tagged SeMet-substituted enzymes in Escherichia coli strain BL21 Star(DE3)
Kluyveromyces lactis
Crystallization (Commentary) (protein specific)
Crystallization
Organism
purified recombinant wild-type and mutant His-tagged SeMet-substituted enzymes, sitting drop vapour diffusion method, mixing of 10 mg/ml protein in 20 mM Tris/HCl, pH 7.5, 200 mM NaCl, 2-10 mM DTT, with reservoir containing 16% PEG 8000, 20% glycerol, and 0.04 M potassium phosphate, and 100 mM sodium/potassium tartrate, 20C, X-ray diffraction structure determination and analysis at 2.5-2.6 A resolution, molecular replacement
Kluyveromyces lactis
Engineering (protein specific)
Protein Variants
Commentary
Organism
G559E/G572E
site-directed mutagenesis, crystal structure analysis, the mutant shows 14fold increaed Km for allophanate, and reduced substrate binding at the N-domain active site, but is catalytically active
Kluyveromyces lactis
additional information
generation of isolated domains
Kluyveromyces lactis
S177A
site-directed mutagenesis, crystal structure analysis
Kluyveromyces lactis
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant wild-type and mutant His-tagged SeMet-substituted enzymes from Escherichia coli strain BL21 Star(DE3) by nickel affinity chromatography and gel filtration
Kluyveromyces lactis
Subunits (protein specific)
Subunits
Commentary
Organism
dimer
enzyme domain architecture, overview. Both the N- and the C-domains require dimerization for their optimal activities
Kluyveromyces lactis
General Information
General Information
Commentary
Organism
additional information
the enzyme's N and C domains catalyze sequential reactions, overview
Kluyveromyces lactis
physiological function
allophanate hydrolase is essential for urea utilization. The enzyme also has important functions in the eukaryotic pyrimidine nucleic acid precursor degradation pathway, the yeast-hypha transition that several pathogens utilize to escape the host defense, and an s-triazine herbicide degradation pathway in soil bacteria
Kluyveromyces lactis
General Information (protein specific)
General Information
Commentary
Organism
additional information
the enzyme's N and C domains catalyze sequential reactions, overview
Kluyveromyces lactis
physiological function
allophanate hydrolase is essential for urea utilization. The enzyme also has important functions in the eukaryotic pyrimidine nucleic acid precursor degradation pathway, the yeast-hypha transition that several pathogens utilize to escape the host defense, and an s-triazine herbicide degradation pathway in soil bacteria
Kluyveromyces lactis
Other publictions for EC 3.5.1.54
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
753037
Zhao
Structure and function of ure ...
Kluyveromyces lactis, Kluyveromyces lactis ATCC 8585, Kluyveromyces lactis CBS 2359, Kluyveromyces lactis DSM 70799, Kluyveromyces lactis NBRC 1267, Kluyveromyces lactis NRRL Y-1140, Kluyveromyces lactis WM37
Biosci. Rep.
38
BSR20171617
2018
-
-
1
1
3
-
-
-
-
-
1
7
-
11
-
-
1
-
-
-
-
-
14
2
3
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
3
-
-
-
-
-
-
-
1
7
-
-
-
1
-
-
-
-
14
2
-
-
-
-
1
-
-
-
-
2
2
-
-
-
746393
Lin
The urea carboxylase and allo ...
Candida albicans, Candida albicans ATCC MYA-2876, Granulibacter bethesdensis, Granulibacter bethesdensis ATCC BAA-1260, Granulibacter bethesdensis CGDN1H1, Pseudomonas syringae pv. tomato, Pseudomonas syringae pv. tomato ATCC BAA-871D-5, Pseudomonas syringae pv. tomato DC3000, Saccharomyces cerevisiae, Saccharomyces cerevisiae ATCC 204508
Protein Sci.
25
1812-1824
2016
-
-
1
-
1
-
1
10
-
-
-
11
-
15
-
-
1
-
-
-
-
-
11
-
10
-
-
-
6
4
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
10
-
-
-
11
-
-
-
1
-
-
-
-
11
-
-
-
-
6
4
-
-
-
-
13
13
-
6
6
733179
Balotra
X-ray structure of the amidase ...
Pseudomonas sp.
Appl. Environ. Microbiol.
81
470-480
2015
-
-
1
1
2
-
-
1
-
-
-
1
-
3
-
-
1
-
-
-
-
-
2
3
1
1
1
-
-
1
-
-
-
-
-
-
-
-
1
-
1
2
-
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
-
2
3
1
1
-
-
1
-
-
-
-
2
2
-
-
-
752542
Balotra
X-Ray structure of the amidas ...
Pseudomonas sp. ADP
Appl. Environ. Microbiol.
81
470-480
2015
-
-
1
1
1
-
-
-
-
-
-
1
-
3
-
-
1
-
-
-
-
-
2
2
1
1
-
-
-
1
1
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
2
1
-
-
-
1
1
-
-
-
2
2
-
-
-
753254
Zhang
-
Theoretical investigation on ...
Granulibacter bethesdensis, Granulibacter bethesdensis ATCC BAA-1260, Granulibacter bethesdensis CGDNIH1
Chem. Res. Chin. Univ.
31
1023-1028
2015
-
-
-
1
-
-
-
-
-
-
-
3
-
5
-
-
-
-
-
-
-
-
6
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
733034
Balotra
Crystallization and preliminar ...
Pseudomonas sp.
Acta crystallogr. Sect. F
70
310-315
2014
-
-
1
1
1
-
-
-
-
-
2
1
-
3
-
-
1
-
-
-
-
-
2
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
2
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
733342
Lin
The structure of allophanate h ...
Granulibacter bethesdensis, Granulibacter bethesdensis ATCC BAA-1260
Biochemistry
52
690-700
2013
-
-
1
1
8
-
-
2
-
-
1
2
-
5
-
-
1
-
-
-
-
-
4
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
1
-
1
8
-
-
-
-
2
-
-
1
2
-
-
-
1
-
-
-
-
4
1
1
-
-
1
1
-
-
-
-
3
3
-
8
8
734220
Fan
Structure and function of allo ...
Kluyveromyces lactis
J. Biol. Chem.
288
21422-21432
2013
-
-
1
1
3
-
-
-
-
-
-
-
-
3
-
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
718475
Jacques
The structure of TTHA0988 from ...
no activity in Thermus thermophilus
Acta Crystallogr. Sect. D
67
105-111
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667267
Shapir
Purification and characterizat ...
Enterobacter cloacae, Enterobacter cloacae 99
Appl. Environ. Microbiol.
72
2491-2495
2006
-
-
1
-
-
-
1
1
-
1
3
2
-
6
-
-
-
-
-
-
1
-
10
1
3
1
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
1
-
1
3
2
-
-
-
-
-
-
1
-
10
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
667259
Cheng
Allophanate hydrolase, not ure ...
Agrobacterium tumefaciens, Agrobacterium tumefaciens J14a, Enterobacter cloacae, Enterobacter cloacae 99, Herbaspirillum huttiense, Herbaspirillum huttiense NRRL B-12228, Pseudomonas sp., Ralstonia pickettii, Ralstonia pickettii D
Appl. Environ. Microbiol.
71
4437-4445
2005
-
-
4
-
-
-
-
-
-
-
-
9
-
18
-
-
-
-
-
-
-
-
19
-
7
1
-
-
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
19
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
668661
Kanamori
Allophanate hydrolase of Oleom ...
Oleomonas sagaranensis, Oleomonas sagaranensis HD-1
FEMS Microbiol. Lett.
245
61-65
2005
-
-
1
-
-
-
-
1
-
-
2
2
-
4
-
-
1
1
-
-
1
-
4
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
2
2
-
-
-
1
-
-
1
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
669098
Shapir
Purification and characterizat ...
Pseudomonas sp.
J. Bacteriol.
187
3731-3738
2005
-
-
1
-
3
-
1
2
-
-
2
1
-
4
-
-
1
-
-
-
1
-
6
1
1
-
-
-
2
1
1
-
-
1
-
-
-
-
1
-
-
3
-
-
1
1
2
-
-
2
1
-
-
-
1
-
-
1
-
6
1
-
-
-
2
1
1
-
-
-
-
-
-
-
-
209193
Nishiya
-
Production of urea amidolase b ...
Cyberlindnera jadinii, Cyberlindnera jadinii CA (u)-37
Seibutsu Shiro Bunseki
18
288-293
1995
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1609
Sumrada
Urea carboxylase and allophana ...
Saccharomyces cerevisiae
J. Biol. Chem.
257
9119-9127
1982
-
-
-
-
-
-
-
-
-
-
1
1
-
3
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
209196
Maitz
-
Purification and properties of ...
Chlamydomonas reinhardtii
Biochim. Biophys. Acta
714
486-491
1982
-
-
-
-
-
-
5
1
-
-
2
1
-
1
-
-
1
-
-
-
1
-
2
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
5
1
1
-
-
2
1
-
-
-
1
-
-
1
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1602
Whitney
Urea carboxylase and allophana ...
Saccharomyces cerevisiae
Biochem. Biophys. Res. Commun.
49
45-51
1972
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-