Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 3.4.24.64 extracted from

  • Oshima, T.; Yamasaki, E.; Ogishima, T.; Kadowaki, K.; Ito, A.; Kitada, S.
    Recognition and processing of a nuclear-encoded polyprotein precursor by mitochondrial processing peptidase (2005), Biochem. J., 385, 755-761.
    View publication on PubMedView publication on EuropePMC

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
nuclear-encoded polyprotein precursor + H2O Saccharomyces cerevisiae the nuclear-encoded protein RPS14 (ribosomal protein S14) of rice mitochondria is synthesized in the cytosol as a polyprotein consisting of a large N-terminal domain comprising preSDHB (succinate dehydrogenase B precursor) and the C-terminal RPS14. After the preSDHB–RPS14 polyprotein is transported into the mitochondrial matrix, the protein is processed into three peptides: the N-terminal prepeptide, the SDHB domain and the C-terminal mature RPS14. MPP (mitochondrial processing peptidase) plays an essential role in processing of the polyprotein. Purified yeast MPP cleaves both the N-terminal presequence and the connector region between SDHB and RPS14. The connector region is processed more rapidly than the presequence. The cleavage site between SDHB and RPS14 is located in an MPPprocessing motif. MPP interacts with multiple sites in the region, possibly in a similar manner to the interaction with the N-terminal presequence. In addition, MPP preferentially recognizes the unfolded structure of preSDHB–RPS14. In mitochondria, MPP may recognize the stretched poly-protein during passage of the precursor through the translocational apparatus in the inner membrane, and cleaves the connecting region between the SDHB and RPS14 domains even before processing of the presequence ?
-
?

Organism

Organism UniProt Comment Textmining
Saccharomyces cerevisiae
-
recombinantly expressed in Escherichia coli
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
nuclear-encoded polyprotein precursor + H2O the nuclear-encoded protein RPS14 (ribosomal protein S14) of rice mitochondria is synthesized in the cytosol as a polyprotein consisting of a large N-terminal domain comprising preSDHB (succinate dehydrogenase B precursor) and the C-terminal RPS14. After the preSDHB–RPS14 polyprotein is transported into the mitochondrial matrix, the protein is processed into three peptides: the N-terminal prepeptide, the SDHB domain and the C-terminal mature RPS14. MPP (mitochondrial processing peptidase) plays an essential role in processing of the polyprotein. Purified yeast MPP cleaves both the N-terminal presequence and the connector region between SDHB and RPS14. The connector region is processed more rapidly than the presequence. The cleavage site between SDHB and RPS14 is located in an MPPprocessing motif. MPP interacts with multiple sites in the region, possibly in a similar manner to the interaction with the N-terminal presequence. In addition, MPP preferentially recognizes the unfolded structure of preSDHB–RPS14. In mitochondria, MPP may recognize the stretched poly-protein during passage of the precursor through the translocational apparatus in the inner membrane, and cleaves the connecting region between the SDHB and RPS14 domains even before processing of the presequence Saccharomyces cerevisiae ?
-
?
nuclear-encoded polyprotein precursor + H2O the nuclear-encoded protein RPS14 (ribosomal protein S14) of rice mitochondria is synthesized in the cytosol as a polyprotein consisting of a large N-terminal domain comprising preSDHB (succinate dehydrogenase B precursor) and the C-terminal RPS14. After the preSDHB–RPS14 polyprotein is transported into the mitochondrial matrix, the protein is processed into three peptides: the N-terminal prepeptide, the SDHB domain and the C-terminal mature RPS14. MPP (mitochondrial processing peptidase) plays an essential role in processing of the polyprotein. Purified yeast MPP cleaves both the N-terminal presequence and the connector region between SDHB and RPS14. The connector region is processed more rapidly than the presequence. The cleavage site between SDHB and RPS14 is located in an MPP processing motif. MPP interacts with multiple sites in the region, possibly in a similar manner to the interaction with the N-terminal presequence. In addition, MPP preferentially recognizes the unfolded structure of preSDHB–RPS14. In mitochondria, MPP may recognize the stretched poly-protein during passage of the precursor through the translocational apparatus in the inner membrane, and cleaves the connecting region between the SDHB and RPS14 domains even before processing of the presequence Saccharomyces cerevisiae ?
-
?