BRENDA - Enzyme Database show
show all sequences of 2.7.2.4

Microbial aspartokinases

Truffa-Bachi, P.; The Enzymes, 3rd Ed. (Boyer, P. D. , ed. ) 8, 509-553 (1973)
No PubMed abstract available

Data extracted from this reference:

Activating Compound
Activating Compound
Commentary
Organism
Structure
NH4+
-
Geobacillus stearothermophilus
NH4+
-
Paenibacillus polymyxa
General Stability
General Stability
Organism
L-lysine, L-threonine or L-methionine protects the enzymic activity against heat inactivation
Rhodocyclus tenuis
nonpolar L-amino acids protect from inactivation by heat and detergent and reverse the inhibition caused by feedback inhibitors L-lysine and L-threonine
Paenibacillus polymyxa
Inhibitors
Inhibitors
Commentary
Organism
Structure
aspartate-beta-semialdehyde
-
Bacillus licheniformis
aspartate-beta-semialdehyde
-
Rhodobacter sphaeroides
DL-meso-diaminopimelic acid
aspartokinase I, noncompetitive inhibition
Bacillus subtilis
DL-meso-diaminopimelic acid
-
Geobacillus stearothermophilus
L-lysine
-
Azotobacter sp.
L-lysine
-
Bacillus cereus
L-lysine
-
Bacillus licheniformis
L-lysine
concerted feedback inhibition with L-threonine
Brevibacterium flavum
L-lysine
concerted feedback inhibition with L-threonine
Corynebacterium glutamicum
L-lysine
-
Geobacillus stearothermophilus
L-lysine
-
Paenibacillus polymyxa
L-lysine
-
Pseudomonas aeruginosa
L-lysine
concerted feedback inhibition with L-threonine
Pseudomonas fluorescens
L-lysine
-
Pseudomonas putida
L-lysine
-
Rhodobacter capsulatus
L-lysine
-
Rhodobacter sphaeroides
L-lysine
-
Rhodocyclus tenuis
L-lysine
-
Salmonella enterica subsp. enterica serovar Typhimurium
L-lysine
-
Bacillus subtilis
L-lysine
-
Escherichia coli
L-threonine
aspartokinase II, competitive inhibition
Bacillus subtilis
L-threonine
-
Geobacillus stearothermophilus
L-threonine
-
Paenibacillus polymyxa
L-threonine
-
Pseudomonas aeruginosa
L-threonine
-
Pseudomonas fluorescens
L-threonine
-
Pseudomonas putida
L-threonine
-
Rhodocyclus tenuis
L-threonine
-
Saccharomyces cerevisiae
L-threonine
-
Escherichia coli
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.18
-
ATP
aspartokinase I
Escherichia coli
0.9
-
L-aspartate
-
Rhodocyclus tenuis
1.5
-
L-aspartate
aspartokinase I
Escherichia coli
1.5
-
L-aspartate
-
Paenibacillus polymyxa
1.9
-
ATP
aspartokinase II, 27°C
Escherichia coli
2.1
-
L-aspartate
aspartokinase II, 27°C
Escherichia coli
3
-
ATP
-
Rhodocyclus tenuis
3
-
L-aspartate
aspartokinase I
Bacillus subtilis
4
-
ATP
aspartokinase I
Escherichia coli
4.7
-
L-aspartate
aspartokinase III, 27°C
Escherichia coli
4.8
-
ATP
aspartokinase III, 27°C
Escherichia coli
4.8
-
ATP
-
Pseudomonas putida
4.8
-
L-aspartate
-
Pseudomonas putida
17
-
L-aspartate
aspartokinase II
Bacillus subtilis
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe2+
-
Neurospora crassa
Fe2+
-
Paenibacillus polymyxa
Fe2+
-
Saccharomyces cerevisiae
K+
-
Bacillus subtilis
K+
-
Geobacillus stearothermophilus
K+
activity enhanced
Paenibacillus polymyxa
K+
-
Pseudomonas fluorescens
Mg2+
-
Neurospora crassa
Mg2+
-
Paenibacillus polymyxa
Mg2+
-
Saccharomyces cerevisiae
Mn2+
-
Neurospora crassa
Mn2+
-
Pseudomonas fluorescens
Mn2+
-
Saccharomyces cerevisiae
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
17000
-
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
43000
-
4 * 43000, aspartokinase II, equilibrium sedimentation
Escherichia coli
47000
-
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
60000
-
? * 60000, high-speed sedimentation equilibrium in 6.0 mM guanidinium chloride
Escherichia coli
66000
-
4 * 66000, ultracentrifugation
Escherichia coli
80000
-
4 * 80000, aspartokinase-homoserine dehydrogenase complex, sedimentation equlibrium performed on guanidinium chloride dissolved complex
Escherichia coli
84000
-
4 * 84000, SDS-PAGE
Escherichia coli
88000
-
4 * 88000, gel filtration in 6.0 mM guanidinium chloride
Escherichia coli
100000
-
gel filtration
Rhodocyclus tenuis
110000
-
gel filtration
Geobacillus stearothermophilus
116000
-
equilibrium ultracentrifugation
Paenibacillus polymyxa
122000
-
2 * 122000, ultracentrifugation in TES or HEPES buffer
Escherichia coli
125000
-
aspartokinase II
Bacillus subtilis
126000
-
gel filtration
Pseudomonas putida
127000
-
aspartokinase III, sedimentation equilibrium
Escherichia coli
169000
-
aspartokinase II, equilibrium sedimentation
Escherichia coli
250000
-
aspartokinase I
Bacillus subtilis
358000
-
light scattering studies
Escherichia coli
360000
-
equilibrium sedimentation
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + L-aspartate
Salmonella enterica subsp. enterica serovar Typhimurium
-
ADP + 4-phospho-L-aspartate
-
Salmonella enterica subsp. enterica serovar Typhimurium
r
ATP + L-aspartate
Escherichia coli
-
ADP + 4-phospho-L-aspartate
-
Escherichia coli
r
ATP + L-aspartate
Saccharomyces cerevisiae
-
ADP + 4-phospho-L-aspartate
-
Saccharomyces cerevisiae
r
ATP + L-aspartate
Geobacillus stearothermophilus
-
ADP + 4-phospho-L-aspartate
-
Geobacillus stearothermophilus
r
ATP + L-aspartate
Neurospora crassa
-
ADP + 4-phospho-L-aspartate
-
Neurospora crassa
r
ATP + L-aspartate
Pseudomonas fluorescens
-
ADP + 4-phospho-L-aspartate
-
Pseudomonas fluorescens
r
ATP + L-aspartate
Rhodobacter capsulatus
-
ADP + 4-phospho-L-aspartate
-
Rhodobacter capsulatus
r
ATP + L-aspartate
Paenibacillus polymyxa
-
ADP + 4-phospho-L-aspartate
-
Paenibacillus polymyxa
r
ATP + L-aspartate
Rhodospirillum rubrum
-
ADP + 4-phospho-L-aspartate
-
Rhodospirillum rubrum
r
ATP + L-aspartate
Rhodocyclus tenuis
-
ADP + 4-phospho-L-aspartate
-
Rhodocyclus tenuis
r
ATP + L-aspartate
Bacillus subtilis
physiological role of aspartokinase II is to supply precursors for the amino acid pool
ADP + 4-phospho-L-aspartate
-
Bacillus subtilis
r
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Azotobacter sp.
-
-
-
Bacillus cereus
-
-
-
Bacillus licheniformis
-
-
-
Bacillus subtilis
-
-
-
Brevibacterium flavum
-
-
-
Corynebacterium glutamicum
-
-
-
Escherichia coli
-
K12
-
Geobacillus stearothermophilus
-
-
-
Neurospora crassa
-
-
-
no activity in Edwardsiella sp.
-
-
-
no activity in Providencia sp.
-
-
-
Paenibacillus polymyxa
-
-
-
Pseudomonas aeruginosa
-
-
-
Pseudomonas fluorescens
-
-
-
Pseudomonas putida
-
-
-
Rhodobacter capsulatus
-
-
-
Rhodobacter sphaeroides
-
-
-
Rhodocyclus tenuis
-
-
-
Rhodospirillum rubrum
-
-
-
Saccharomyces cerevisiae
-
yeast
-
Salmonella enterica subsp. enterica serovar Typhimurium
-
-
-
Purification (Commentary)
Commentary
Organism
-
Paenibacillus polymyxa
-
Rhodobacter sphaeroides
-
Rhodocyclus tenuis
aspartokinase III
Escherichia coli
partially
Geobacillus stearothermophilus
Storage Stability
Storage Stability
Organism
-10°C, can be stored over a period of 6 months with a 40% loss of activity, longer storage does not lead to further inactivation
Paenibacillus polymyxa
-15°C, aspartokinase II, stable in buffer containing 20% glycerol, remaining 100% active and homogenous for several months
Escherichia coli
25°C, aspartokinase I, stable at room temperature either in presence of 1.0 mM L-threonine or of 0.15 M KCl
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + L-aspartate
-
642314
Salmonella enterica subsp. enterica serovar Typhimurium
ADP + 4-phospho-L-aspartate
-
642314
Salmonella enterica subsp. enterica serovar Typhimurium
r
ATP + L-aspartate
-
642314
Bacillus subtilis
ADP + 4-phospho-L-aspartate
-
642314
Bacillus subtilis
r
ATP + L-aspartate
-
642314
Escherichia coli
ADP + 4-phospho-L-aspartate
-
642314
Escherichia coli
r
ATP + L-aspartate
-
642314
Saccharomyces cerevisiae
ADP + 4-phospho-L-aspartate
-
642314
Saccharomyces cerevisiae
r
ATP + L-aspartate
-
642314
Geobacillus stearothermophilus
ADP + 4-phospho-L-aspartate
-
642314
Geobacillus stearothermophilus
r
ATP + L-aspartate
-
642314
Neurospora crassa
ADP + 4-phospho-L-aspartate
-
642314
Neurospora crassa
r
ATP + L-aspartate
-
642314
Pseudomonas fluorescens
ADP + 4-phospho-L-aspartate
-
642314
Pseudomonas fluorescens
r
ATP + L-aspartate
-
642314
Rhodobacter capsulatus
ADP + 4-phospho-L-aspartate
-
642314
Rhodobacter capsulatus
r
ATP + L-aspartate
-
642314
Paenibacillus polymyxa
ADP + 4-phospho-L-aspartate
-
642314
Paenibacillus polymyxa
r
ATP + L-aspartate
-
642314
Rhodospirillum rubrum
ADP + 4-phospho-L-aspartate
-
642314
Rhodospirillum rubrum
r
ATP + L-aspartate
-
642314
Rhodocyclus tenuis
ADP + 4-phospho-L-aspartate
-
-
-
r
ATP + L-aspartate
-
642314
Rhodocyclus tenuis
ADP + 4-phospho-L-aspartate
-
642314
Rhodocyclus tenuis
r
ATP + L-aspartate
maximum velocity of the reverse reaction is only one-twelfth that of the forward reaction, but has the advantage of using commercial substrates
642314
Escherichia coli
ADP + 4-phospho-L-aspartate
-
642314
Escherichia coli
r
ATP + L-aspartate
physiological role of aspartokinase II is to supply precursors for the amino acid pool
642314
Bacillus subtilis
ADP + 4-phospho-L-aspartate
-
642314
Bacillus subtilis
r
additional information
-
642314
Escherichia coli
?
-
-
-
-
additional information
-
642314
Saccharomyces cerevisiae
?
-
-
-
-
additional information
-
642314
Pseudomonas fluorescens
?
-
-
-
-
additional information
-
642314
Paenibacillus polymyxa
?
-
-
-
-
additional information
no other natural aminoacids or D-aspartate are substrates of this reaction
642314
Neurospora crassa
?
-
-
-
-
Subunits
Subunits
Commentary
Organism
dimer
2 * 122000, ultracentrifugation in TES or HEPES buffer
Escherichia coli
heterodimer
-
Bacillus subtilis
oligomer
? * 60000, high-speed sedimentation equilibrium in 6.0 mM guanidinium chloride
Escherichia coli
tetramer
4 * 43000, aspartokinase II, equilibrium sedimentation; 4 * 66000, ultracentrifugation; 4 * 80000-120000, sedimentation in sucrose gradient in absence of threonine; 4 * 80000, aspartokinase-homoserine dehydrogenase complex, sedimentation equlibrium performed on guanidinium chloride dissolved complex; 4 * 84000, SDS-PAGE; 4 * 88000, gel filtration in 6.0 mM guanidinium chloride
Escherichia coli
tetramer
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
55
-
-
Geobacillus stearothermophilus
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
14.2
-
L-aspartate
aspartokinase II
Escherichia coli
39.2
-
L-aspartate
aspartokinase III
Escherichia coli
56.7
-
L-aspartate
aspartokinase I
Escherichia coli
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
-
Geobacillus stearothermophilus
pH Range
pH Minimum
pH Maximum
Commentary
Organism
6
9.5
aspartokinase I, pH range for 50% activity
Bacillus subtilis
6.5
8.2
aspartokinase II, pH range for 50% activity
Bacillus subtilis
Activating Compound (protein specific)
Activating Compound
Commentary
Organism
Structure
NH4+
-
Geobacillus stearothermophilus
NH4+
-
Paenibacillus polymyxa
General Stability (protein specific)
General Stability
Organism
L-lysine, L-threonine or L-methionine protects the enzymic activity against heat inactivation
Rhodocyclus tenuis
nonpolar L-amino acids protect from inactivation by heat and detergent and reverse the inhibition caused by feedback inhibitors L-lysine and L-threonine
Paenibacillus polymyxa
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
aspartate-beta-semialdehyde
-
Bacillus licheniformis
aspartate-beta-semialdehyde
-
Rhodobacter sphaeroides
DL-meso-diaminopimelic acid
aspartokinase I, noncompetitive inhibition
Bacillus subtilis
DL-meso-diaminopimelic acid
-
Geobacillus stearothermophilus
L-lysine
-
Azotobacter sp.
L-lysine
-
Bacillus cereus
L-lysine
-
Bacillus licheniformis
L-lysine
concerted feedback inhibition with L-threonine
Brevibacterium flavum
L-lysine
concerted feedback inhibition with L-threonine
Corynebacterium glutamicum
L-lysine
-
Geobacillus stearothermophilus
L-lysine
-
Paenibacillus polymyxa
L-lysine
-
Pseudomonas aeruginosa
L-lysine
concerted feedback inhibition with L-threonine
Pseudomonas fluorescens
L-lysine
-
Pseudomonas putida
L-lysine
-
Rhodobacter capsulatus
L-lysine
-
Rhodobacter sphaeroides
L-lysine
-
Rhodocyclus tenuis
L-lysine
-
Salmonella enterica subsp. enterica serovar Typhimurium
L-lysine
-
Bacillus subtilis
L-lysine
-
Escherichia coli
L-threonine
aspartokinase II, competitive inhibition
Bacillus subtilis
L-threonine
-
Geobacillus stearothermophilus
L-threonine
-
Paenibacillus polymyxa
L-threonine
-
Pseudomonas aeruginosa
L-threonine
-
Pseudomonas fluorescens
L-threonine
-
Pseudomonas putida
L-threonine
-
Rhodocyclus tenuis
L-threonine
-
Saccharomyces cerevisiae
L-threonine
-
Escherichia coli
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.18
-
ATP
aspartokinase I
Escherichia coli
0.9
-
L-aspartate
-
Rhodocyclus tenuis
1.5
-
L-aspartate
aspartokinase I
Escherichia coli
1.5
-
L-aspartate
-
Paenibacillus polymyxa
1.9
-
ATP
aspartokinase II, 27°C
Escherichia coli
2.1
-
L-aspartate
aspartokinase II, 27°C
Escherichia coli
3
-
ATP
-
Rhodocyclus tenuis
3
-
L-aspartate
aspartokinase I
Bacillus subtilis
4
-
ATP
aspartokinase I
Escherichia coli
4.7
-
L-aspartate
aspartokinase III, 27°C
Escherichia coli
4.8
-
ATP
aspartokinase III, 27°C
Escherichia coli
4.8
-
ATP
-
Pseudomonas putida
4.8
-
L-aspartate
-
Pseudomonas putida
17
-
L-aspartate
aspartokinase II
Bacillus subtilis
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe2+
-
Neurospora crassa
Fe2+
-
Paenibacillus polymyxa
Fe2+
-
Saccharomyces cerevisiae
K+
-
Bacillus subtilis
K+
-
Geobacillus stearothermophilus
K+
activity enhanced
Paenibacillus polymyxa
K+
-
Pseudomonas fluorescens
Mg2+
-
Neurospora crassa
Mg2+
-
Paenibacillus polymyxa
Mg2+
-
Saccharomyces cerevisiae
Mn2+
-
Neurospora crassa
Mn2+
-
Pseudomonas fluorescens
Mn2+
-
Saccharomyces cerevisiae
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
17000
-
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
43000
-
4 * 43000, aspartokinase II, equilibrium sedimentation
Escherichia coli
47000
-
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
60000
-
? * 60000, high-speed sedimentation equilibrium in 6.0 mM guanidinium chloride
Escherichia coli
66000
-
4 * 66000, ultracentrifugation
Escherichia coli
80000
-
4 * 80000, aspartokinase-homoserine dehydrogenase complex, sedimentation equlibrium performed on guanidinium chloride dissolved complex
Escherichia coli
84000
-
4 * 84000, SDS-PAGE
Escherichia coli
88000
-
4 * 88000, gel filtration in 6.0 mM guanidinium chloride
Escherichia coli
100000
-
gel filtration
Rhodocyclus tenuis
110000
-
gel filtration
Geobacillus stearothermophilus
116000
-
equilibrium ultracentrifugation
Paenibacillus polymyxa
122000
-
2 * 122000, ultracentrifugation in TES or HEPES buffer
Escherichia coli
125000
-
aspartokinase II
Bacillus subtilis
126000
-
gel filtration
Pseudomonas putida
127000
-
aspartokinase III, sedimentation equilibrium
Escherichia coli
169000
-
aspartokinase II, equilibrium sedimentation
Escherichia coli
250000
-
aspartokinase I
Bacillus subtilis
358000
-
light scattering studies
Escherichia coli
360000
-
equilibrium sedimentation
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + L-aspartate
Salmonella enterica subsp. enterica serovar Typhimurium
-
ADP + 4-phospho-L-aspartate
-
Salmonella enterica subsp. enterica serovar Typhimurium
r
ATP + L-aspartate
Escherichia coli
-
ADP + 4-phospho-L-aspartate
-
Escherichia coli
r
ATP + L-aspartate
Saccharomyces cerevisiae
-
ADP + 4-phospho-L-aspartate
-
Saccharomyces cerevisiae
r
ATP + L-aspartate
Geobacillus stearothermophilus
-
ADP + 4-phospho-L-aspartate
-
Geobacillus stearothermophilus
r
ATP + L-aspartate
Neurospora crassa
-
ADP + 4-phospho-L-aspartate
-
Neurospora crassa
r
ATP + L-aspartate
Pseudomonas fluorescens
-
ADP + 4-phospho-L-aspartate
-
Pseudomonas fluorescens
r
ATP + L-aspartate
Rhodobacter capsulatus
-
ADP + 4-phospho-L-aspartate
-
Rhodobacter capsulatus
r
ATP + L-aspartate
Paenibacillus polymyxa
-
ADP + 4-phospho-L-aspartate
-
Paenibacillus polymyxa
r
ATP + L-aspartate
Rhodospirillum rubrum
-
ADP + 4-phospho-L-aspartate
-
Rhodospirillum rubrum
r
ATP + L-aspartate
Rhodocyclus tenuis
-
ADP + 4-phospho-L-aspartate
-
Rhodocyclus tenuis
r
ATP + L-aspartate
Bacillus subtilis
physiological role of aspartokinase II is to supply precursors for the amino acid pool
ADP + 4-phospho-L-aspartate
-
Bacillus subtilis
r
Purification (Commentary) (protein specific)
Commentary
Organism
-
Paenibacillus polymyxa
-
Rhodobacter sphaeroides
-
Rhodocyclus tenuis
aspartokinase III
Escherichia coli
partially
Geobacillus stearothermophilus
Storage Stability (protein specific)
Storage Stability
Organism
-10°C, can be stored over a period of 6 months with a 40% loss of activity, longer storage does not lead to further inactivation
Paenibacillus polymyxa
-15°C, aspartokinase II, stable in buffer containing 20% glycerol, remaining 100% active and homogenous for several months
Escherichia coli
25°C, aspartokinase I, stable at room temperature either in presence of 1.0 mM L-threonine or of 0.15 M KCl
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + L-aspartate
-
642314
Salmonella enterica subsp. enterica serovar Typhimurium
ADP + 4-phospho-L-aspartate
-
642314
Salmonella enterica subsp. enterica serovar Typhimurium
r
ATP + L-aspartate
-
642314
Bacillus subtilis
ADP + 4-phospho-L-aspartate
-
642314
Bacillus subtilis
r
ATP + L-aspartate
-
642314
Escherichia coli
ADP + 4-phospho-L-aspartate
-
642314
Escherichia coli
r
ATP + L-aspartate
-
642314
Saccharomyces cerevisiae
ADP + 4-phospho-L-aspartate
-
642314
Saccharomyces cerevisiae
r
ATP + L-aspartate
-
642314
Geobacillus stearothermophilus
ADP + 4-phospho-L-aspartate
-
642314
Geobacillus stearothermophilus
r
ATP + L-aspartate
-
642314
Neurospora crassa
ADP + 4-phospho-L-aspartate
-
642314
Neurospora crassa
r
ATP + L-aspartate
-
642314
Pseudomonas fluorescens
ADP + 4-phospho-L-aspartate
-
642314
Pseudomonas fluorescens
r
ATP + L-aspartate
-
642314
Rhodobacter capsulatus
ADP + 4-phospho-L-aspartate
-
642314
Rhodobacter capsulatus
r
ATP + L-aspartate
-
642314
Paenibacillus polymyxa
ADP + 4-phospho-L-aspartate
-
642314
Paenibacillus polymyxa
r
ATP + L-aspartate
-
642314
Rhodospirillum rubrum
ADP + 4-phospho-L-aspartate
-
642314
Rhodospirillum rubrum
r
ATP + L-aspartate
-
642314
Rhodocyclus tenuis
ADP + 4-phospho-L-aspartate
-
-
-
r
ATP + L-aspartate
-
642314
Rhodocyclus tenuis
ADP + 4-phospho-L-aspartate
-
642314
Rhodocyclus tenuis
r
ATP + L-aspartate
maximum velocity of the reverse reaction is only one-twelfth that of the forward reaction, but has the advantage of using commercial substrates
642314
Escherichia coli
ADP + 4-phospho-L-aspartate
-
642314
Escherichia coli
r
ATP + L-aspartate
physiological role of aspartokinase II is to supply precursors for the amino acid pool
642314
Bacillus subtilis
ADP + 4-phospho-L-aspartate
-
642314
Bacillus subtilis
r
additional information
-
642314
Escherichia coli
?
-
-
-
-
additional information
-
642314
Saccharomyces cerevisiae
?
-
-
-
-
additional information
-
642314
Pseudomonas fluorescens
?
-
-
-
-
additional information
-
642314
Paenibacillus polymyxa
?
-
-
-
-
additional information
no other natural aminoacids or D-aspartate are substrates of this reaction
642314
Neurospora crassa
?
-
-
-
-
Subunits (protein specific)
Subunits
Commentary
Organism
dimer
2 * 122000, ultracentrifugation in TES or HEPES buffer
Escherichia coli
heterodimer
-
Bacillus subtilis
oligomer
? * 60000, high-speed sedimentation equilibrium in 6.0 mM guanidinium chloride
Escherichia coli
tetramer
4 * 43000, aspartokinase II, equilibrium sedimentation; 4 * 66000, ultracentrifugation; 4 * 80000-120000, sedimentation in sucrose gradient in absence of threonine; 4 * 80000, aspartokinase-homoserine dehydrogenase complex, sedimentation equlibrium performed on guanidinium chloride dissolved complex; 4 * 84000, SDS-PAGE; 4 * 88000, gel filtration in 6.0 mM guanidinium chloride
Escherichia coli
tetramer
2 * 17000 + 2 * 47000, SDS-PAGE
Paenibacillus polymyxa
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
55
-
-
Geobacillus stearothermophilus
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
14.2
-
L-aspartate
aspartokinase II
Escherichia coli
39.2
-
L-aspartate
aspartokinase III
Escherichia coli
56.7
-
L-aspartate
aspartokinase I
Escherichia coli
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
8
-
-
Geobacillus stearothermophilus
pH Range (protein specific)
pH Minimum
pH Maximum
Commentary
Organism
6
9.5
aspartokinase I, pH range for 50% activity
Bacillus subtilis
6.5
8.2
aspartokinase II, pH range for 50% activity
Bacillus subtilis
Other publictions for EC 2.7.2.4
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
737413
Viswanath
-
Enhancing the activity of aspa ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
Am. J. Biochem. Mol. Biol.
6
33-44
2016
-
1
1
-
1
-
3
-
-
1
-
2
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
-
1
-
-
3
-
-
-
1
-
2
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
738802
Dong
Characterization of aspartate ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13869
J. Ind. Microbiol. Biotechnol.
43
873-885
2016
-
-
1
-
1
-
3
-
-
1
-
2
-
7
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
3
-
-
-
1
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
747010
Xu
-
Modification of aspartokinase ...
Escherichia coli, Escherichia coli LATR11
Biochem. Eng. J.
114
79-86
2016
-
2
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
737545
Wang
Evolution of a chimeric aspart ...
Bacillus subtilis 168, Bacillus subtilis, Thermus thermophilus
Appl. Microbiol. Biotechnol.
99
8527-8536
2015
-
-
2
-
2
-
-
-
-
2
-
3
-
7
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
2
-
2
-
-
-
-
-
-
2
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
738419
Min
Characterization of Aspartate ...
Corynebacterium pekinense
Int. J. Mol. Sci.
16
28270-28284
2015
-
-
1
1
5
-
4
1
-
1
3
1
-
2
-
-
-
-
-
-
-
-
1
1
2
-
1
-
2
-
1
1
-
-
-
-
-
1
1
1
5
-
-
4
-
1
-
1
3
1
-
-
-
-
-
-
-
-
1
1
2
-
1
-
2
-
1
-
-
4
4
-
-
-
739356
Clark
Analysis of loss-of-function m ...
Arabidopsis thaliana
Plant Physiol.
168
1512-1526
2015
-
-
-
-
1
-
-
-
1
1
-
5
-
6
-
-
-
-
-
1
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
5
-
5
-
-
-
-
-
3
5
-
5
-
-
-
-
-
5
-
-
5
-
-
-
-
-
-
-
-
-
-
2
10
-
-
-
737927
Manjasetty
Crystal structure of Clostridi ...
Clostridium acetobutylicum
Biotechnol. Rep.
3
73-85
2014
-
-
1
1
-
-
2
-
-
1
-
1
-
4
-
-
1
-
-
-
-
-
2
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
2
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
4
4
-
-
-
739505
Tong
Co-expression of bacterial asp ...
Escherichia coli
PLoS ONE
9
e88310
2014
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
723793
Rastegari
-
Improvement in the production ...
Corynebacterium glutamicum
Trop. J. Pharm. Res.
12
51-56
2013
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
721208
Schuldt
Cloning, expression, purificat ...
Mycobacterium tuberculosis
Acta Crystallogr. Sect. F
67
380-385
2011
-
-
1
1
-
-
1
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
722530
Stoeveken
A specialized aspartokinase en ...
Pseudomonas stutzeri
J. Bacteriol.
193
4456-4468
2011
-
-
1
-
-
-
2
4
-
-
5
-
-
4
-
-
1
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
7
-
-
1
-
-
-
-
7
2
-
4
-
-
5
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
722849
Chen
Integrating molecular dynamics ...
Escherichia coli
J. Biotechnol.
154
248-254
2011
-
-
-
-
27
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
27
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
723377
Qi
Metabolically engineered soybe ...
Xenorhabdus bovienii
Plant Biotechnol. J.
9
193-204
2011
-
-
1
-
3
-
1
8
-
-
-
-
-
6
-
-
1
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
4
-
-
1
-
-
3
-
4
1
-
8
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
8
8
723495
Ufaz
Transcriptional control of asp ...
Arabidopsis thaliana
Planta
233
1025-1040
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
723684
Yang
Structural view of the regulat ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Protein Cell
2
745-754
2011
-
-
1
1
-
-
1
-
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
722683
Yoshida
Mechanism of concerted inhibit ...
Corynebacterium glutamicum
J. Biol. Chem.
285
27477-27486
2010
-
-
1
-
2
-
2
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
722962
Robin
A new mode of dimerization of ...
Synechocystis sp.
J. Mol. Biol.
399
283-293
2010
-
-
1
1
-
-
2
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
703647
Yoshida
Crystal structures of the regu ...
Thermus thermophilus
FEBS J.
276
3124-3136
2009
-
-
1
1
-
-
1
-
-
-
2
1
-
4
-
-
1
-
-
-
-
-
1
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
1
-
-
-
-
1
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
705543
Lo
Cohesion group approach for ev ...
Aquifex aeolicus, Bdellovibrio bacteriovorus, Bdellovibrio bacteriovorus HD100, Chlamydia sp., Corynebacterium glutamicum, Escherichia coli, Francisella tularensis subsp. novicida, Francisella tularensis subsp. novicida U112, Leptospira borgpetersenii, Leptospira interrogans, Maricaulis maris, Maricaulis maris MCS10, Methanopyrus kandleri, Myxococcus xanthus, Pyrococcus furiosus, Saccharomyces cerevisiae, Thermotoga maritima, Thermotoga petrophila
Microbiol. Mol. Biol. Rev.
73
594-651
2009
-
-
-
-
-
-
-
-
-
-
-
18
-
28
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689547
Hacham
Overexpression of mutated form ...
Nicotiana tabacum
Plant J.
54
260-271
2008
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
693065
Liu
The structural basis for allos ...
Methanocaldococcus jannaschii
J. Biol. Chem.
283
16216-16225
2008
-
1
1
1
-
-
1
-
-
1
-
1
-
4
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
1
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677391
Yoshida
Purification, crystallization ...
Thermus thermophilus
Acta Crystallogr. Sect. F
63
96-98
2007
-
-
1
1
-
-
1
-
-
-
1
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677773
Hamano
varepsilon-Poly-L-lysine produ ...
Streptomyces albulus, Streptomyces albulus CR1
Appl. Microbiol. Biotechnol.
76
873-882
2007
-
-
1
-
3
-
6
6
-
-
-
2
-
7
-
-
1
-
-
-
2
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
4
-
-
9
-
8
-
-
-
2
-
-
-
2
-
-
3
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
678794
Nishida
Phylogenetic and disruption an ...
Deinococcus radiodurans, Deinococcus radiodurans R1 / ATCC 13939 / DSM 20539
Biosci. Biotechnol. Biochem.
71
1015-1020
2007
-
1
1
-
2
-
-
-
-
-
-
2
-
14
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
679764
Curien
Allosteric monofunctional aspa ...
Arabidopsis thaliana
FEBS J.
274
164-176
2007
-
1
1
-
-
-
3
8
1
-
3
3
-
6
-
-
1
-
-
-
-
6
4
-
-
-
2
3
-
-
-
-
-
-
-
-
2
4
-
-
-
-
-
8
-
8
3
-
4
3
-
-
-
4
-
-
-
6
4
-
-
-
5
4
-
-
-
-
-
-
-
-
-
-
681136
Wang
Characterization of monofuncti ...
Zea mays
J. Exp. Bot.
58
2653-2660
2007
-
1
1
-
-
-
1
-
-
-
-
1
-
4
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
1
-
1
2
-
-
-
-
2
2
-
-
-
-
-
1
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681433
Yoshida
Structural Insight into concer ...
Corynebacterium glutamicum
J. Mol. Biol.
368
521-536
2007
-
1
1
1
11
-
3
-
-
1
5
1
-
3
-
-
1
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
2
17
-
-
5
-
-
-
1
6
1
-
-
-
2
-
-
-
-
2
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
670165
Cahyanto
Regulation of aspartokinase, a ...
Lactobacillus plantarum, Lactobacillus plantarum NCIMB 8826
Microbiology
152
105-112
2006
-
-
1
-
-
-
4
-
-
1
-
-
-
7
-
-
-
-
-
-
6
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
4
-
-
-
1
-
-
-
-
-
-
-
-
6
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677365
Faehnle
The initial step in the archae ...
Methanocaldococcus jannaschii
Acta Crystallogr. Sect. F
62
962-966
2006
-
-
1
1
-
-
2
-
-
1
3
-
-
2
-
-
1
-
-
-
-
-
1
3
-
1
-
2
-
-
-
-
-
-
1
-
-
1
-
1
-
-
1
2
-
-
-
1
3
-
-
-
-
1
-
-
-
-
1
3
-
1
-
2
-
-
-
-
-
-
-
-
-
-
677561
Ferreira
-
Lysine and threonine biosynthe ...
Sorghum bicolor
Ann. Appl. Biol.
149
77-86
2006
-
-
-
-
-
-
6
-
-
1
2
-
-
1
-
-
1
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
1
2
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
680701
Kotaka
Structures of R- and T-state E ...
Escherichia coli
J. Biol. Chem.
281
31544-31552
2006
-
-
1
1
-
-
1
-
-
1
-
-
-
2
-
-
1
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
1
-
-
-
-
-
1
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
662432
Curien
Identification of six novel al ...
Arabidopsis thaliana
J. Biol. Chem.
280
41178-41183
2005
6
-
1
-
-
2
2
8
1
-
-
2
-
4
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
3
-
-
6
-
1
-
-
-
2
-
2
3
8
1
-
-
2
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663387
Ferreira
-
Determination of aspartate kin ...
Zea mays
Sci. Agric. (Piracicaba, Braz.)
62
184-189
2005
-
-
-
-
-
-
3
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
663452
Velasco
A new mutation in the yeast as ...
Saccharomyces cerevisiae, Saccharomyces cerevisiae HT1(pIVUts31d), Saccharomyces cerevisiae SG211
Yeast
22
99-110
2005
-
-
1
-
3
-
1
-
-
-
-
4
-
5
-
-
1
-
-
-
20
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
3
-
-
2
-
-
-
-
-
4
-
-
-
2
-
-
20
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660868
Kato
Conversion of feedback regulat ...
Bacillus subtilis, Thermus thermophilus
Biochem. Biophys. Res. Commun.
316
802-808
2004
2
-
2
-
-
-
4
10
-
-
22
2
-
5
-
-
2
-
-
-
2
-
2
4
-
-
2
5
-
-
-
-
4
-
-
2
-
2
-
-
-
-
-
4
4
10
-
-
22
2
-
-
-
2
-
-
2
-
2
4
-
-
2
5
-
-
-
-
-
-
-
-
-
-
660880
Marina
Characterization of the aspart ...
Saccharomyces cerevisiae
Biochem. Biophys. Res. Commun.
321
584-591
2004
-
-
1
-
-
-
1
4
-
-
9
1
-
2
-
-
1
-
-
-
1
-
1
2
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
4
-
-
9
1
-
-
-
1
-
-
1
-
1
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
642341
Paris
Mechanism of control of Arabid ...
Arabidopsis thaliana
J. Biol. Chem.
278
5361-5366
2003
-
-
-
-
4
-
1
2
-
-
1
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
1
-
2
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
657018
Rognes
Transcriptional and biochemica ...
Arabidopsis thaliana
Plant Mol. Biol.
51
281-294
2003
-
-
1
-
2
-
4
-
1
-
-
1
-
5
-
-
1
-
-
3
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
4
-
-
1
-
-
1
-
-
-
1
-
3
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660862
Bareich
Functionally important amino a ...
Saccharomyces cerevisiae
Biochem. Biophys. Res. Commun.
311
597-603
2003
-
-
1
-
12
-
1
26
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
26
-
-
-
-
4
-
-
-
-
1
-
-
12
-
-
1
4
26
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
26
-
-
-
-
-
-
-
-
-
-
662821
Demidov
-
Additive effects of the feed-b ...
Vicia narbonensis
Mol. Breed.
11
187-201
2003
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642340
Paris
Overproduction, purification, ...
Arabidopsis thaliana
Protein Expr. Purif.
24
105-110
2002
-
1
1
-
-
-
1
4
1
-
3
1
-
2
-
-
1
-
-
-
2
1
2
2
-
-
-
-
-
-
-
-
-
1
-
-
1
2
-
-
-
-
-
1
-
4
1
-
3
1
-
-
-
1
-
-
2
1
2
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
654640
James
Production and characterizatio ...
Escherichia coli
Biochemistry
41
3720-3725
2002
-
-
1
-
-
-
1
2
-
-
-
1
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
2
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
642337
Hernando-Rico
Structure of the ask-asd opero ...
Amycolatopsis lactamdurans, Amycolatopsis lactamdurans LC411, no activity in Streptomyces akiyoshiensis
Microbiology
147
1547-1555
2001
-
-
1
-
-
-
2
-
-
-
2
-
-
4
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642338
King
Evidence for direct interactio ...
Bradyrhizobium japonicum, Bradyrhizobium japonicum I110proC
J. Biol. Chem.
276
21311-21316
2001
-
-
1
-
-
-
-
-
-
-
-
2
-
3
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642339
Kobashi
Characterization of aspartate ...
Bacillus subtilis
Biosci. Biotechnol. Biochem.
65
1391-1394
2001
-
-
1
-
-
-
2
2
-
-
1
1
-
3
-
-
1
-
-
-
1
1
2
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
2
-
2
-
-
1
1
-
-
-
1
-
-
1
1
2
1
-
-
-
1
-
-
1
-
-
-
-
-
-
-
390201
Zhang
Expression in Escherichia coli ...
Amycolatopsis mediterranei
Appl. Microbiol. Biotechnol.
54
52-58
2000
-
-
1
-
-
-
3
2
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
3
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642335
Lugli
-
Effects of calcium, S-adenosyl ...
Oryza sativa
Plant Sci.
150
51-58
2000
3
-
-
-
-
-
2
-
-
2
-
1
-
1
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
2
-
-
-
2
-
1
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642332
Arevalo-Rodriguez
Mutations that cause threonine ...
Saccharomyces cerevisiae
Yeast
15
1331-1345
1999
-
-
1
-
3
-
1
4
-
-
-
1
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
1
-
4
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642333
Kobashi
Kinetic and mutation analyses ...
Thermus thermophilus
J. Biosci. Bioeng.
87
739-745
1999
1
-
1
-
27
-
-
49
-
1
2
1
-
3
-
-
1
-
-
-
1
1
2
1
-
-
-
24
-
-
-
-
-
-
-
1
-
1
-
-
27
-
-
-
-
49
-
1
2
1
-
-
-
1
-
-
1
1
2
1
-
-
-
24
-
-
-
-
-
-
-
-
-
-
642334
Rao
Analysis of photocontrol of as ...
Hordeum vulgare
Biochem. Mol. Biol. Int.
47
347-360
1999
-
-
-
-
-
-
1
-
1
1
-
1
-
3
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
1
-
1
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642331
Kochhar
Subunit structure of lysine se ...
Spinacia oleracea
Biochem. Mol. Biol. Int.
44
795-806
1998
1
-
-
-
-
-
3
-
-
1
3
-
-
2
-
-
1
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
3
-
-
-
1
3
-
-
-
-
1
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642330
Heremans
A mutant of Arabidopsis thalia ...
Arabidopsis thaliana
Biochem. Genet.
35
139-153
1997
-
-
-
-
-
-
2
-
-
-
-
-
-
3
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642329
Keng
Specificity of aspartokinase I ...
Escherichia coli
Arch. Biochem. Biophys.
335
73-81
1996
-
-
1
-
-
-
17
11
-
-
1
-
-
3
-
-
1
-
-
-
-
-
11
1
-
-
-
-
1
1
-
-
13
-
-
-
-
1
-
-
-
-
-
17
13
11
-
-
1
-
-
-
-
1
-
-
-
-
11
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
642328
Jetten
Effect of different levels of ...
Corynebacterium flavescens, Corynebacterium flavescens N13, Corynebacterium glutamicum
Appl. Microbiol. Biotechnol.
43
76-82
1995
-
-
2
-
1
-
1
-
-
-
2
1
-
4
-
-
-
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642327
Azevedo
-
Aspartate kinase regulation in ...
Zea mays
Phytochemistry
31
3731-3734
1992
-
-
-
-
-
-
1
-
-
-
1
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642326
Dotson
Kinetic studies of lysine-sens ...
Zea mays
Plant Physiol.
93
98-104
1990
-
-
-
-
-
-
1
2
-
1
5
1
-
2
-
-
1
-
-
2
-
-
1
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
1
5
1
-
-
-
1
-
2
-
-
1
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
642325
Dotson
Purification and characterizat ...
Zea mays
Plant Physiol.
91
1602-1608
1989
-
-
-
-
-
-
2
-
1
-
4
1
-
2
-
-
1
-
-
1
1
3
2
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
4
1
-
-
-
1
-
1
1
3
2
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
642324
Relton
-
Physical and kinetic propertie ...
Daucus carota
Biochim. Biophys. Acta
953
48-60
1988
1
-
-
-
-
1
7
2
-
1
6
-
-
1
-
-
1
-
-
1
-
2
-
-
-
-
-
-
1
-
-
-
-
2
-
1
-
-
-
-
-
1
-
7
-
2
-
1
6
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
642323
Kochhar
-
Isolation, characterization an ...
Spinacia oleracea
Biochim. Biophys. Acta
880
220-225
1986
1
-
-
-
-
-
3
3
-
1
2
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
3
-
3
-
1
2
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642322
McCarron
Aspartokinase of Streptococcus ...
Streptococcus mutans, Streptococcus mutans BHT
J. Bacteriol.
134
483-491
1978
1
-
-
-
-
1
1
2
-
-
2
-
-
4
-
-
1
-
-
-
1
2
2
1
1
-
2
-
1
-
1
-
1
-
-
1
-
-
-
-
-
1
-
1
1
2
-
-
2
-
-
-
-
1
-
-
1
2
2
1
1
-
2
-
1
-
1
-
-
-
-
-
-
-
642319
Moir
Properties and subunit structu ...
Bacillus subtilis, Bacillus subtilis VB217
J. Biol. Chem.
252
4648-4654
1977
-
-
-
-
-
-
3
2
-
-
3
2
-
3
-
-
1
-
1
-
1
1
4
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
1
2
-
-
3
2
-
-
-
1
1
-
1
1
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642320
Saiki
-
Aspartokinase of an extreme th ...
Thermus thermophilus, Thermus thermophilus AT-62
Agric. Biol. Chem.
41
1651-1655
1977
-
-
-
-
-
-
1
-
-
-
-
2
-
5
-
-
1
-
-
-
1
-
2
-
1
1
1
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
1
-
-
1
-
2
-
1
1
1
-
1
1
1
-
-
-
-
-
-
-
642321
Shewry
Properties and regulation of a ...
Hordeum vulgare
Plant Physiol.
59
69-73
1977
-
-
-
-
-
-
2
-
-
-
-
1
-
2
-
-
1
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
1
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642318
Hitchcock
Lysine- and lysine-plus-threon ...
Brevibacillus brevis
Biochim. Biophys. Acta
445
350-363
1976
-
-
-
-
-
1
1
-
-
-
2
1
-
3
-
-
1
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
2
1
-
-
-
1
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642317
Dawson Funkhouser
Kinetic and molecular properti ...
Escherichia coli, Escherichia coli B / ATCC 11303
J. Biol. Chem.
249
5478-5484
1974
-
-
-
-
-
-
1
-
-
-
2
2
-
177
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
2
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642312
Biswas
Multivalent feedback inhibitio ...
Paenibacillus polymyxa, Paenibacillus polymyxa 63 / ATCC 25901
J. Biol. Chem.
248
2894-2900
1973
-
-
-
-
-
-
2
-
-
-
2
2
1
3
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
2
2
1
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642313
Dungan
Concerted feedback inhibition. ...
Pseudomonas fluorescens
J. Biol. Chem.
248
8534-8540
1973
3
-
-
-
-
-
4
-
-
3
3
1
-
3
-
-
1
-
-
-
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
4
-
-
-
3
3
1
-
-
-
1
-
-
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642314
Truffa-Bachi
-
Microbial aspartokinases ...
Azotobacter sp., Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Brevibacterium flavum, Corynebacterium glutamicum, Escherichia coli, Geobacillus stearothermophilus, Neurospora crassa, no activity in Edwardsiella sp., no activity in Providencia sp., Paenibacillus polymyxa, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Rhodobacter capsulatus, Rhodobacter sphaeroides, Rhodocyclus tenuis, Rhodospirillum rubrum, Saccharomyces cerevisiae, Salmonella enterica subsp. enterica serovar Typhimurium
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
8
509-553
1973
2
-
-
-
-
2
29
14
-
13
19
11
-
21
-
-
5
-
-
-
-
3
19
5
1
-
-
3
1
2
-
-
-
-
-
2
-
-
-
-
-
2
-
29
-
14
-
13
19
11
-
-
-
5
-
-
-
3
19
5
1
-
-
3
1
2
-
-
-
-
-
-
-
-
642315
Wong
Aspartokinase from wheat germ ...
Triticum aestivum
Plant Physiol.
51
322-326
1973
-
-
-
-
-
1
6
4
-
3
-
1
-
2
-
-
1
-
-
1
-
2
3
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
6
-
4
-
3
-
1
-
-
-
1
-
1
-
2
3
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
642316
Wong
Aspartokinase in Lenna minor L ...
Lemna minor
Plant Physiol.
51
327-331
1973
-
-
-
-
-
-
2
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642310
Starnes
Threonine-sensitive aspartokin ...
Escherichia coli, Escherichia coli ATCC 9723
Biochemistry
11
677-687
1972
-
-
-
-
-
-
1
-
-
-
4
2
-
2
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
4
2
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642311
Veron
The threonine-sensitive homose ...
Escherichia coli
Eur. J. Biochem.
28
520-527
1972
-
-
-
-
-
-
1
-
-
-
2
1
-
2
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642309
Kuramitsu
Catalytic and regulatory prope ...
Geobacillus stearothermophilus
Arch. Biochem. Biophys.
147
683-691
1971
1
-
-
-
-
1
1
2
-
1
1
1
-
2
-
-
1
-
-
-
1
2
1
-
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
1
-
2
-
1
1
1
-
-
-
1
-
-
1
2
1
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
642308
Paulus
Multivalent feedback inhibitio ...
Paenibacillus polymyxa
J. Biol. Chem.
242
4980-4986
1967
-
-
-
-
-
-
3
3
-
2
-
1
-
2
-
-
1
-
-
-
1
1
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
3
-
2
-
1
-
-
-
1
-
-
1
1
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
642307
Black
-
Conversion of aspartic acid to ...
Saccharomyces cerevisiae
Methods Enzymol.
5
820-827
1962
-
-
-
-
-
-
-
-
-
3
-
1
-
1
-
-
1
-
-
-
1
-
2
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
-
-
1
-
2
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-