BRENDA - Enzyme Database show
show all sequences of 2.6.1.79

Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism

de la Torre, F.; El-Azaz, J.; Avila, C.; Canovas, F.M.; Plant Physiol. 164, 92-104 (2014)

Data extracted from this reference:

Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
plastid
-
Nicotiana benthamiana
9536
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Nicotiana benthamiana
-
-
-
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
plastid
-
Nicotiana benthamiana
9536
-
General Information
General Information
Commentary
Organism
physiological function
suppression of prephenate aminotransferase leads to a severe reduction in growth and strong chlorosis symptoms. Prephenate aminotransferase silenced plants exhibit extremely reduced levels of asparagine and are greatly affected in their phenylalanine metabolism and lignin deposition. Prephenate aminotransferase suppression triggers a transcriptional reprogramming in plastid nitrogen metabolism. The enzyme is essential for plant growth and development
Nicotiana benthamiana
General Information (protein specific)
General Information
Commentary
Organism
physiological function
suppression of prephenate aminotransferase leads to a severe reduction in growth and strong chlorosis symptoms. Prephenate aminotransferase silenced plants exhibit extremely reduced levels of asparagine and are greatly affected in their phenylalanine metabolism and lignin deposition. Prephenate aminotransferase suppression triggers a transcriptional reprogramming in plastid nitrogen metabolism. The enzyme is essential for plant growth and development
Nicotiana benthamiana
Other publictions for EC 2.6.1.79
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
738632
Graindorge
Three different classes of ami ...
Sinorhizobium meliloti, Streptomyces avermitilis, Streptomyces avermitilis DSM 46492, Synechocystis sp.
J. Biol. Chem.
289
3198-3208
2014
-
-
-
-
-
-
-
4
-
-
-
-
-
4
-
-
-
-
-
-
-
-
6
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
739351
de la Torre
Deciphering the role of aspart ...
Nicotiana benthamiana
Plant Physiol.
164
92-104
2014
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
722267
Graindorge
Identification of a plant gene ...
Arabidopsis thaliana
FEBS Lett.
584
4357-4360
2010
-
-
1
-
-
-
-
2
1
-
1
-
-
1
-
-
-
-
-
-
1
-
3
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
1
-
1
-
-
-
-
-
-
-
1
-
3
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
659858
Bonner
Prephenate aminotransferase ...
Brevibacterium flavum, Corynebacterium glutamicum, Hemerocallis hybrid cultivar, Lemna sp., Magnolia sp., Nicotiana sylvestris, Sorghum sp., Spinacia oleracea
Methods Enzymol.
142
479-487
1987
-
-
-
-
-
1
1
-
-
-
1
8
-
8
-
-
3
-
-
15
2
1
37
-
1
1
8
-
1
-
-
8
-
-
-
-
-
-
8
-
-
1
-
1
-
-
-
-
1
8
-
-
-
3
-
15
2
1
37
-
1
1
8
-
1
-
-
-
-
-
-
-
-
-
660563
Siehl
Tyrosine biosynthesis in Sorgh ...
Sorghum bicolor x Sorghum sudanesis
Z. Naturforsch. C
41
79-86
1986
-
-
-
-
-
1
-
3
-
-
-
1
-
4
-
-
1
-
-
1
1
-
6
-
1
-
1
-
1
1
-
1
-
1
-
-
-
-
1
-
-
1
-
-
-
3
-
-
-
1
-
-
-
1
-
1
1
-
6
-
1
-
1
-
1
1
-
1
-
-
-
-
-
-
657635
Bonner
Novel features of prephenate a ...
Nicotiana sylvestris
Arch. Biochem. Biophys.
238
237-246
1985
-
-
-
-
-
1
1
-
-
-
-
1
-
1
-
-
1
-
-
1
9
1
9
-
1
1
1
-
1
-
-
1
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
1
-
-
-
1
-
1
9
1
9
-
1
1
1
-
1
-
-
-
-
-
-
-
-
-