BRENDA - Enzyme Database show
show all sequences of 2.3.1.B2

Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation

Zheng, Z.; Li, M.; Xue, X.J.; Tian, H.L.; Li, Z.; Chen, G.Q.; Appl. Microbiol. Biotechnol. 72, 896-905 (2006)

Data extracted from this reference:

Engineering
Amino acid exchange
Commentary
Organism
A81E
in vitro activity is 108% of wild-type activity
Cupriavidus necator
A81G
in vitro activity is 99% of wild-type activity
Cupriavidus necator
A81M
in vitro activity is 101% of wild-type activity
Cupriavidus necator
A81P
in vitro activity is 105% of wild-type activity
Cupriavidus necator
additional information
deleting the first 60 or 78 amino acid residues results in approximately 60% PHB accumulation, similar to that of the recombinant harboring wild-type phbCRe gene, while negligible, polyhydroxybutyrate is accumulated in the recombinant harboring the plasmid encoding PhbCRe with a deletion of N-terminal 88- or 98-amino acid residues. Polyhydroxybutyrate polymerized by mutant PhbCRe with a deletion of N-terminal 78 amino acid residues shows much higher molecular weight compared with that of the wild-type. Polyhydroxybutyrate synthase from Ralstonia eutropha with a deletion on N-terminal 88 amino acid residues shows a significant reduced activity, as reflected by only 1.5% polyhydroxybutyrate accumulation compared with the wild type which produces 58.4% polyhydroxybutyrate of the cell dry weight
Cupriavidus necator
Y75E
in vitro activity is 137% of wild-type activity
Cupriavidus necator
Y75E/A81E
in vitro activity is 154% of wild-type activity
Cupriavidus necator
Y75F
in vitro activity is 104% of wild-type activity
Cupriavidus necator
Y75F/A81M
in vitro activity is 105% of wild-type activity
Cupriavidus necator
Y75G
in vitro activity is 110% of wild-type activity
Cupriavidus necator
Y75G/A81G
in vitro activity is 119% of wild-type activity
Cupriavidus necator
Y75P
in vitro activity is 138% of wild-type activity
Cupriavidus necator
Y75P/A81P
in vitro activity is 162% of wild-type activity
Cupriavidus necator
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Cupriavidus necator
-
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
3-hydroxybutyryl-CoA + [(R)-3-hydroxybutanoate]n
-
684590
Cupriavidus necator
[(R)-3-hydroxybutanoate](n+1) + CoA
-
-
-
?
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
A81E
in vitro activity is 108% of wild-type activity
Cupriavidus necator
A81G
in vitro activity is 99% of wild-type activity
Cupriavidus necator
A81M
in vitro activity is 101% of wild-type activity
Cupriavidus necator
A81P
in vitro activity is 105% of wild-type activity
Cupriavidus necator
additional information
deleting the first 60 or 78 amino acid residues results in approximately 60% PHB accumulation, similar to that of the recombinant harboring wild-type phbCRe gene, while negligible, polyhydroxybutyrate is accumulated in the recombinant harboring the plasmid encoding PhbCRe with a deletion of N-terminal 88- or 98-amino acid residues. Polyhydroxybutyrate polymerized by mutant PhbCRe with a deletion of N-terminal 78 amino acid residues shows much higher molecular weight compared with that of the wild-type. Polyhydroxybutyrate synthase from Ralstonia eutropha with a deletion on N-terminal 88 amino acid residues shows a significant reduced activity, as reflected by only 1.5% polyhydroxybutyrate accumulation compared with the wild type which produces 58.4% polyhydroxybutyrate of the cell dry weight
Cupriavidus necator
Y75E
in vitro activity is 137% of wild-type activity
Cupriavidus necator
Y75E/A81E
in vitro activity is 154% of wild-type activity
Cupriavidus necator
Y75F
in vitro activity is 104% of wild-type activity
Cupriavidus necator
Y75F/A81M
in vitro activity is 105% of wild-type activity
Cupriavidus necator
Y75G
in vitro activity is 110% of wild-type activity
Cupriavidus necator
Y75G/A81G
in vitro activity is 119% of wild-type activity
Cupriavidus necator
Y75P
in vitro activity is 138% of wild-type activity
Cupriavidus necator
Y75P/A81P
in vitro activity is 162% of wild-type activity
Cupriavidus necator
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
3-hydroxybutyryl-CoA + [(R)-3-hydroxybutanoate]n
-
684590
Cupriavidus necator
[(R)-3-hydroxybutanoate](n+1) + CoA
-
-
-
?
Other publictions for EC 2.3.1.B2
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735683
Buckley
Chemistry with an artificial p ...
Caulobacter vibrioides
Biochemistry
54
2117-2125
2015
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736527
Tai
Discovery of a new polyhydroxy ...
uncultured bacterium, uncultured bacterium SC8
J. Biosci. Bioeng.
121
355-364
2015
-
1
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
735350
Zhang
Mechanistic insight with HBCH2 ...
Cupriavidus necator
ACS Chem. Biol.
9
1773-1779
2014
-
-
-
-
-
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
735855
Foong
Whole genome amplification app ...
Marinobacter sp., Marinobacter sp. C1S70
BMC Microbiol.
14
318
2014
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
735485
Thomson
Efficient production of active ...
Cupriavidus necator, Cupriavidus necator H16 / ATCC 23440 / NCIB 10442 / S-10-1
Appl. Environ. Microbiol.
79
1948-1955
2013
-
1
1
-
-
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
735535
Ochi
Engineering of class i lactate ...
Cupriavidus necator, Cupriavidus necator H16 / ATCC 23440 / NCIB 10442 / S-10-1
Appl. Microbiol. Biotechnol.
97
3441-3447
2013
-
1
-
-
2
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736535
Park
Propionyl-CoA dependent biosyn ...
Pseudomonas sp., Pseudomonas sp. MBEL 6–19
J. Biotechnol.
165
93-98
2013
-
1
1
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
718922
Cho
Purification of polyhydroxybut ...
Cupriavidus necator, Cupriavidus necator H16 / ATCC 23440 / NCIB 10442 / S-10-1
Biochemistry
51
2276-2288
2012
-
-
1
-
1
-
-
-
-
-
1
2
-
42
-
-
1
-
-
-
2
-
2
2
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
2
-
-
-
1
-
-
2
-
2
2
1
-
-
-
-
-
-
-
-
1
1
-
-
-
714539
Matsumoto
A new pathway for poly(3-hydro ...
Cupriavidus necator
Biosci. Biotechnol. Biochem.
75
364-366
2011
-
1
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
719116
Shozui
A new beneficial mutation in P ...
Pseudomonas sp., Pseudomonas sp. 61-3
Biosci. Biotechnol. Biochem.
74
1710-1712
2010
-
-
1
-
11
-
-
-
-
-
-
4
-
6
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
11
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684590
Zheng
Mutation on N-terminus of poly ...
Cupriavidus necator
Appl. Microbiol. Biotechnol.
72
896-905
2006
-
-
-
-
13
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685489
Matsumoto
Enhancement of poly(3-hydroxyb ...
Aeromonas caviae
Biomacromolecules
6
2126-2130
2005
-
-
1
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685729
Normi
Site-directed saturation mutag ...
Cupriavidus necator
Biotechnol. Lett.
27
705-712
2005
-
-
-
-
19
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688783
Normi
Characterization and propertie ...
Cupriavidus necator
Macromol. Biosci.
5
197-206
2005
-
-
1
-
21
-
-
2
-
-
1
-
-
3
-
-
1
-
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
21
-
-
-
-
2
-
-
1
-
-
-
-
1
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
685487
Zhang
Mechanism of the polymerizatio ...
Cupriavidus necator
Biomacromolecules
4
504-509
2003
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685312
Rehm
Molecular characterization of ...
Cupriavidus necator
Biochim. Biophys. Acta
1594
178-190
2002
-
-
1
-
11
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684662
Yuan
Class I and III polyhydroxyalk ...
Cupriavidus necator
Arch. Biochem. Biophys.
394
87-98
2001
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685059
Jia
Mechanistic studies on class I ...
Cupriavidus necator
Biochemistry
40
1011-1019
2001
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685486
Song
In vitro polymerization and co ...
Cupriavidus necator
Biomacromolecules
1
433-439
2000
-
-
1
-
-
-
1
1
-
-
-
-
-
3
-
-
1
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
687130
Kichise
Biosynthesis of polyhydroxyalk ...
Aeromonas caviae
Int. J. Biol. Macromol.
25
69-77
1999
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-