BRENDA - Enzyme Database show
show all sequences of 2.1.2.13

Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase

Han, S.H.; Kim, B.G.; Yoon, J.A.; Chong, Y.; Ahn, J.H.; Appl. Environ. Microbiol. 80, 2754-2762 (2014)

Data extracted from this reference:

Application
Application
Commentary
Organism
synthesis
engineering of Escherichia coli to ynthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. For UDP-xylose biosynthesis, genes UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E.scherichia coli, are overexpressed. The gene encoding ArnA, which competes with UXS for UDP-glucuronic acid, is deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) i overexpressed. UDP-dependent glycosyltransferases are engineered to ensure specificity for UDP-xylose and UDP-arabinose. The srains thus obtained synthesize approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside
Escherichia coli
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
A0A140N587
-
-
Application (protein specific)
Application
Commentary
Organism
synthesis
engineering of Escherichia coli to ynthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. For UDP-xylose biosynthesis, genes UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E.scherichia coli, are overexpressed. The gene encoding ArnA, which competes with UXS for UDP-glucuronic acid, is deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) i overexpressed. UDP-dependent glycosyltransferases are engineered to ensure specificity for UDP-xylose and UDP-arabinose. The srains thus obtained synthesize approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside
Escherichia coli
Other publictions for EC 2.1.2.13
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
739796
Fischer
The structure of apo ArnA feat ...
Escherichia coli
Acta Crystallogr. Sect. D
71
687-696
2015
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739902
Han
Synthesis of flavonoid O-pento ...
Escherichia coli
Appl. Environ. Microbiol.
80
2754-2762
2014
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696208
Gatzeva-Topalova
Crystal structure and mechanis ...
Escherichia coli
Biochemistry
44
5328-5338
2005
-
-
1
1
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
698730
Breazeale
A formyltransferase required f ...
Escherichia coli
J. Biol. Chem.
280
14154-14167
2005
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
698732
Williams
Structure and function of both ...
Escherichia coli
J. Biol. Chem.
280
23000-23008
2005
-
1
1
1
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
1
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
701248
Gatzeva-Topalova
Structure and mechanism of Arn ...
Escherichia coli
Structure
13
929-942
2005
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
698723
Breazeale
Oxidative decarboxylation of U ...
Escherichia coli
J. Biol. Chem.
277
2886-2896
2001
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-