BRENDA - Enzyme Database show
show all sequences of 2.1.1.269

Single-taxon field measurements of bacterial gene regulation controlling DMSP fate

Varaljay, V.A.; Robidart, J.; Preston, C.M.; Gifford, S.M.; Durham, B.P.; Burns, A.S.; Ryan, J.P.; Marin, R.; Kiene, R.P.; Zehr, J.P.; Scholin, C.A.; Moran, M.A.; ISME J. 9, 1677-1686 (2015)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene dmdA, genotyping and expression analysis
Ruegeria pomeroyi
gene dmdA, genotyping and expression analysis in relation to the phytoplankton dynamics in Monterey Bay
Roseobacter sp.
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Roseobacter sp.
-
from Monterey Bay, Canada, gene dmdA
-
Roseobacter sp. HTCC 2255
-
from Monterey Bay, Canada, gene dmdA
-
Ruegeria pomeroyi
-
from Monterey Bay, Canada, gene dmdA
-
Cloned(Commentary) (protein specific)
Commentary
Organism
gene dmdA, genotyping and expression analysis in relation to the phytoplankton dynamics in Monterey Bay
Roseobacter sp.
gene dmdA, genotyping and expression analysis
Ruegeria pomeroyi
General Information
General Information
Commentary
Organism
evolution
detection of taxon-specific gene expression in Roseobacter sp. HTCC2255 and in situ regulation of the first gene in each DMSP pathway, gene dddP and gene dmdA, that corresponds with shifts in the taxonomy of the phytoplankton community
Roseobacter sp.
metabolism
the bacterial switch is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere
Roseobacter sp.
metabolism
the bacterial switch is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere
Ruegeria pomeroyi
additional information
positive correlation of katG expression with gene dmdA but not gene dddP during the period when regulation expression is uncoupled
Ruegeria pomeroyi
General Information (protein specific)
General Information
Commentary
Organism
evolution
detection of taxon-specific gene expression in Roseobacter sp. HTCC2255 and in situ regulation of the first gene in each DMSP pathway, gene dddP and gene dmdA, that corresponds with shifts in the taxonomy of the phytoplankton community
Roseobacter sp.
metabolism
the bacterial switch is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere
Roseobacter sp.
metabolism
the bacterial switch is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere
Ruegeria pomeroyi
additional information
positive correlation of katG expression with gene dmdA but not gene dddP during the period when regulation expression is uncoupled
Ruegeria pomeroyi
Other publictions for EC 2.1.1.269
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735504
Cui
Abundance and distribution of ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC7211, Candidatus Puniceispirillum marinum, Candidatus Puniceispirillum marinum IMCC1322, Roseobacter sp.
Appl. Environ. Microbiol.
81
4184-4194
2015
-
-
3
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
736286
Varaljay
Single-taxon field measurement ...
Roseobacter sp., Roseobacter sp. HTCC 2255, Ruegeria pomeroyi
ISME J.
9
1677-1686
2015
-
-
2
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
720998
Schuller
Structures of dimethylsulfonio ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC1062
Protein Sci.
21
289-298
2012
-
-
1
1
-
-
-
-
-
-
-
1
-
6
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
718639
Howard
Changes in dimethylsulfoniopro ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC7211, Candidatus Puniceispirillum marinum, Flavobacteriaceae, Rhodobacterales, Rhodospirillales, Roseobacter sp., Sphingomonadales, unidentified marine bacterioplankton, unidentified marine bacterioplankton HTCC2080
Appl. Environ. Microbiol.
77
524-531
2011
-
-
4
-
-
-
-
-
-
-
-
-
-
15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
8
-
-
-
698600
Reisch
Dimethylsulfoniopropionate-dep ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC1062, Ruegeria pomeroyi
J. Bacteriol.
190
8018-8024
2008
-
-
2
-
-
-
8
7
-
-
4
-
-
12
-
-
2
-
-
-
-
-
12
2
-
-
-
4
2
2
-
-
2
-
-
-
-
2
-
-
-
-
-
8
2
7
-
-
5
-
-
-
-
3
-
-
-
-
12
3
-
-
-
4
3
3
-
-
-
-
-
-
2
2
701221
Howard
Bacterial taxa that limit sulf ...
Candidatus Pelagibacter ubique, Ruegeria pomeroyi DSS-3
Science
314
649-652
2006
-
-
1
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721447
Jansen
Tetrahydrofolate serves as a m ...
uncultured bacterium, uncultured bacterium WN
Arch. Microbiol.
169
84-87
1998
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-