BRENDA - Enzyme Database show
show all sequences of 2.1.1.269

Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean

Cui, Y.; Suzuki, S.; Omori, Y.; Wong, S.K.; Ijichi, M.; Kaneko, R.; Kameyama, S.; Tanimoto, H.; Hamasaki, K.; Appl. Environ. Microbiol. 81, 4184-4194 (2015)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene dmdA, genotyping in marine bacteria, overview
Candidatus Pelagibacter ubique
gene dmdA, genotyping in marine bacteria, overview
Candidatus Puniceispirillum marinum
gene dmdA, genotyping in marine bacteria, overview
Roseobacter sp.
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Candidatus Pelagibacter ubique
-
gene dmdA
-
Candidatus Pelagibacter ubique HTCC7211
-
gene dmdA
-
Candidatus Puniceispirillum marinum
-
gene dmdA
-
Candidatus Puniceispirillum marinum IMCC1322
-
gene dmdA
-
Roseobacter sp.
-
gene dmdA
-
Cloned(Commentary) (protein specific)
Commentary
Organism
gene dmdA, genotyping in marine bacteria, overview
Candidatus Pelagibacter ubique
gene dmdA, genotyping in marine bacteria, overview
Candidatus Puniceispirillum marinum
gene dmdA, genotyping in marine bacteria, overview
Roseobacter sp.
General Information
General Information
Commentary
Organism
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Candidatus Pelagibacter ubique
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Candidatus Puniceispirillum marinum
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Roseobacter sp.
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Candidatus Pelagibacter ubique
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Candidatus Puniceispirillum marinum
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Roseobacter sp.
General Information (protein specific)
General Information
Commentary
Organism
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Candidatus Pelagibacter ubique
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Candidatus Puniceispirillum marinum
evolution
phylogenetic analysis, multidimensional analysis based on the abundances of dimethylsulfoniopropionate degradation genes and environmental factors reveal that the distribution pattern of these genes is influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibit significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possess dmdA genes, are suggested to be the main potential dimethylsulfoniopropionate consumers
Roseobacter sp.
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Candidatus Pelagibacter ubique
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Candidatus Puniceispirillum marinum
physiological function
DMSP demethylase is responsible for the dimethylsulfoniopropionate assimilation
Roseobacter sp.
Other publictions for EC 2.1.1.269
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
735504
Cui
Abundance and distribution of ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC7211, Candidatus Puniceispirillum marinum, Candidatus Puniceispirillum marinum IMCC1322, Roseobacter sp.
Appl. Environ. Microbiol.
81
4184-4194
2015
-
-
3
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
736286
Varaljay
Single-taxon field measurement ...
Roseobacter sp., Roseobacter sp. HTCC 2255, Ruegeria pomeroyi
ISME J.
9
1677-1686
2015
-
-
2
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
720998
Schuller
Structures of dimethylsulfonio ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC1062
Protein Sci.
21
289-298
2012
-
-
1
1
-
-
-
-
-
-
-
1
-
6
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
718639
Howard
Changes in dimethylsulfoniopro ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC7211, Candidatus Puniceispirillum marinum, Flavobacteriaceae, Rhodobacterales, Rhodospirillales, Roseobacter sp., Sphingomonadales, unidentified marine bacterioplankton, unidentified marine bacterioplankton HTCC2080
Appl. Environ. Microbiol.
77
524-531
2011
-
-
4
-
-
-
-
-
-
-
-
-
-
15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
8
-
-
-
698600
Reisch
Dimethylsulfoniopropionate-dep ...
Candidatus Pelagibacter ubique, Candidatus Pelagibacter ubique HTCC1062, Ruegeria pomeroyi
J. Bacteriol.
190
8018-8024
2008
-
-
2
-
-
-
8
7
-
-
4
-
-
12
-
-
2
-
-
-
-
-
12
2
-
-
-
4
2
2
-
-
2
-
-
-
-
2
-
-
-
-
-
8
2
7
-
-
5
-
-
-
-
3
-
-
-
-
12
3
-
-
-
4
3
3
-
-
-
-
-
-
2
2
701221
Howard
Bacterial taxa that limit sulf ...
Candidatus Pelagibacter ubique, Ruegeria pomeroyi DSS-3
Science
314
649-652
2006
-
-
1
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721447
Jansen
Tetrahydrofolate serves as a m ...
uncultured bacterium, uncultured bacterium WN
Arch. Microbiol.
169
84-87
1998
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-