BRENDA - Enzyme Database show
show all sequences of 1.7.1.B3

Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA) Characterization of kinetics and substrate specificity

Valiauga, B.; Williams, E.M.; Ackerley, D.F.; Cenas, N.; Arch. Biochem. Biophys. 614, 14-22 (2017)

Data extracted from this reference:

Application
Application
Commentary
Organism
environmental protection
NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives
Escherichia coli
medicine
NfsA has potential applications in the anticancer strategy gene-directed enzyme prodrug therapy
Escherichia coli
Inhibitors
Inhibitors
Commentary
Organism
Structure
dicoumarol
inhibits Escherichia coli enzyme NfsB far more strongly than enzyme NfsA, by acting as a competitive inhibitor towards NADPH, uncompetitive towards substrate tetryl
Escherichia coli
NADP+
inhibition of NfsA-catalyzed tetryl reduction by NADP+
Escherichia coli
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
Michaelis-Menten steady-state kinetics. For NfsA the oxidative half-reaction (i.e., the reoxidation of FMNH by the oxidant substrate) is a rate-limiting step, because the values of kcat at infinite concentrations of tetryl or 2,4,6-trinitrotoluene are substantially lower than the lowest rate of the reductive half reaction (the reduction of FMN by NADPH) measured in the preliminary rapid reaction experiments. Stopped-flow and single-turnover measurements
Escherichia coli
0.011
-
tetryl
pH 7.0, 25C
Escherichia coli
0.018
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.019
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
0.031
-
nifuroxime
pH 7.0, 25C
Escherichia coli
0.033
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
0.037
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.046
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.17
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
0.23
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
0.39
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
1.5
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
2.5
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
-
-
-
Reaction
Reaction
Commentary
Organism
an aromatic amine + 3 NADP+ + 2 H2O = an aromatic nitrate + 3 NADPH + 3 H+
catalytic mechanism analysis, two (four)-electron reduction of nitrobenzenes and single-step (H-) hydride transfer mechanism. NfsA follows a ping-pong mechanism, overview
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
2,4,6-trinitrotoluene + NADPH + H+
-
741786
Escherichia coli
? + NADP+ + H2O
-
-
-
?
5-(aziridin-1-yl)-2,4-dinitrobenzamide + NADPH + H+
i.e. CB1954, an aziridinyl dinitrobenzamide prodrug
741786
Escherichia coli
? + NADP+
-
-
-
?
m-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
additional information
NADPH-dependent reduction of quinones, cf. EC 1.6.5.5, and nitroaromatic compounds by NfsA, overview. The reactivity of nitroaromatic compounds (log kcat/Km) follows a linear dependence on their single-electron reduction potential, indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones is lower than that of nitroaromatics having similar single-electron reduction potential values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones. The reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism, quantitative analysis of two-electron reduction of quinones and nitroaromatics, overview
741786
Escherichia coli
?
-
-
-
-
nifuroxime + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
nitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
nitrofurantoin + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
o-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitroacetophenone + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitrobenzaldehyde + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitrobenzoic acid + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
tetryl + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
Temperature Optimum [C]
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
25
-
assay at
Escherichia coli
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
14
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
15
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
27
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
30
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
55
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
59
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
60
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
64
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
85
-
tetryl
pH 7.0, 25C
Escherichia coli
89
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
136
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
180
-
nifuroxime
pH 7.0, 25C
Escherichia coli
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at
Escherichia coli
Cofactor
Cofactor
Commentary
Organism
Structure
FMN
prosthetic group involved in the reaction
Escherichia coli
NADPH
-
Escherichia coli
Ki Value [mM]
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
additional information
-
additional information
inhibition kinetics
Escherichia coli
0.018
-
dicoumarol
pH 7.0, 25C
Escherichia coli
Application (protein specific)
Application
Commentary
Organism
environmental protection
NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives
Escherichia coli
medicine
NfsA has potential applications in the anticancer strategy gene-directed enzyme prodrug therapy
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
FMN
prosthetic group involved in the reaction
Escherichia coli
NADPH
-
Escherichia coli
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
dicoumarol
inhibits Escherichia coli enzyme NfsB far more strongly than enzyme NfsA, by acting as a competitive inhibitor towards NADPH, uncompetitive towards substrate tetryl
Escherichia coli
NADP+
inhibition of NfsA-catalyzed tetryl reduction by NADP+
Escherichia coli
Ki Value [mM] (protein specific)
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
additional information
-
additional information
inhibition kinetics
Escherichia coli
0.018
-
dicoumarol
pH 7.0, 25C
Escherichia coli
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
Michaelis-Menten steady-state kinetics. For NfsA the oxidative half-reaction (i.e., the reoxidation of FMNH by the oxidant substrate) is a rate-limiting step, because the values of kcat at infinite concentrations of tetryl or 2,4,6-trinitrotoluene are substantially lower than the lowest rate of the reductive half reaction (the reduction of FMN by NADPH) measured in the preliminary rapid reaction experiments. Stopped-flow and single-turnover measurements
Escherichia coli
0.011
-
tetryl
pH 7.0, 25C
Escherichia coli
0.018
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.019
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
0.031
-
nifuroxime
pH 7.0, 25C
Escherichia coli
0.033
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
0.037
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.046
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
0.17
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
0.23
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
0.39
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
1.5
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
2.5
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
2,4,6-trinitrotoluene + NADPH + H+
-
741786
Escherichia coli
? + NADP+ + H2O
-
-
-
?
5-(aziridin-1-yl)-2,4-dinitrobenzamide + NADPH + H+
i.e. CB1954, an aziridinyl dinitrobenzamide prodrug
741786
Escherichia coli
? + NADP+
-
-
-
?
m-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
additional information
NADPH-dependent reduction of quinones, cf. EC 1.6.5.5, and nitroaromatic compounds by NfsA, overview. The reactivity of nitroaromatic compounds (log kcat/Km) follows a linear dependence on their single-electron reduction potential, indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones is lower than that of nitroaromatics having similar single-electron reduction potential values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones. The reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism, quantitative analysis of two-electron reduction of quinones and nitroaromatics, overview
741786
Escherichia coli
?
-
-
-
-
nifuroxime + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
nitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
nitrofurantoin + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
o-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-dinitrobenzene + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitroacetophenone + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitrobenzaldehyde + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
p-nitrobenzoic acid + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
tetryl + NADPH + H+
-
741786
Escherichia coli
? + NADP+
-
-
-
?
Temperature Optimum [C] (protein specific)
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
25
-
assay at
Escherichia coli
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
14
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
15
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
27
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
30
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
55
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
59
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
60
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
64
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
85
-
tetryl
pH 7.0, 25C
Escherichia coli
89
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
136
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
180
-
nifuroxime
pH 7.0, 25C
Escherichia coli
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at
Escherichia coli
General Information
General Information
Commentary
Organism
additional information
comparisons of the quantitative structure-activity relationships of single-electron reduction of quinones and nitroaromatic compounds by dehydrogenase (electron transferase) flavoenzymes, overview
Escherichia coli
physiological function
NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy
Escherichia coli
General Information (protein specific)
General Information
Commentary
Organism
additional information
comparisons of the quantitative structure-activity relationships of single-electron reduction of quinones and nitroaromatic compounds by dehydrogenase (electron transferase) flavoenzymes, overview
Escherichia coli
physiological function
NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy
Escherichia coli
KCat/KM [mM/s]
kcat/KM Value [1/mMs-1]
kcat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
9.3
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
25.6
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
65.2
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
151.3
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
176.5
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
729.7
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
1195.7
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
2697
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
3333.3
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
5806.5
-
nifuroxime
pH 7.0, 25C
Escherichia coli
7157.9
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
7727.27
-
tetryl
pH 7.0, 25C
Escherichia coli
KCat/KM [mM/s] (protein specific)
KCat/KM Value [1/mMs-1]
KCat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
9.3
-
nitrobenzene
pH 7.0, 25C
Escherichia coli
25.6
-
p-nitrobenzoic acid
pH 7.0, 25C
Escherichia coli
65.2
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide
pH 7.0, 25C
Escherichia coli
151.3
-
p-nitroacetophenone
pH 7.0, 25C
Escherichia coli
176.5
-
p-nitrobenzaldehyde
pH 7.0, 25C
Escherichia coli
729.7
-
p-dinitrobenzene
pH 7.0, 25C
Escherichia coli
1195.7
-
m-dinitrobenzene
pH 7.0, 25C
Escherichia coli
2697
-
2,4,6-trinitrotoluene
pH 7.0, 25C
Escherichia coli
3333.3
-
o-dinitrobenzene
pH 7.0, 25C
Escherichia coli
5806.5
-
nifuroxime
pH 7.0, 25C
Escherichia coli
7157.9
-
Nitrofurantoin
pH 7.0, 25C
Escherichia coli
7727.27
-
tetryl
pH 7.0, 25C
Escherichia coli
Other publictions for EC 1.7.1.B3
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
741786
Valiauga
Reduction of quinones and nit ...
Escherichia coli
Arch. Biochem. Biophys.
614
14-22
2017
-
2
-
-
-
-
2
13
-
-
-
-
-
1
-
-
-
1
-
-
-
-
13
-
1
-
-
12
1
-
-
2
2
-
-
-
2
-
2
-
-
-
-
2
2
13
-
-
-
-
-
-
-
-
-
-
-
-
13
-
1
-
-
12
1
-
-
-
-
2
2
-
12
12
743709
Bai
Transformation pathway of 2,4 ...
Escherichia coli
Process Biochem.
50
705-711
2015
-
-
1
-
-
-
-
4
-
-
-
1
-
1
-
-
1
-
-
-
-
-
5
-
1
-
-
3
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
4
-
-
-
1
-
-
-
1
-
-
-
-
5
-
1
-
-
3
1
-
-
-
-
2
2
-
3
3
742167
Yang
Residue Phe42 is critical for ...
Escherichia coli
Biotechnol. Lett.
35
1693-1700
2013
-
-
1
-
3
-
1
19
-
-
-
-
-
1
1
-
1
1
-
-
4
-
5
1
1
-
-
20
1
-
-
2
-
-
-
-
-
1
2
-
3
-
-
1
-
19
-
-
-
-
-
1
-
1
-
-
4
-
5
1
1
-
-
20
1
-
-
-
-
1
1
-
20
20
743280
Green
Pseudomonas aeruginosa NfsB a ...
Escherichia coli
Mol. Cancer
12
58
2013
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
742109
Zenno
Purification and characetriza ...
Bacillus subtilis, Bacillus subtilis ISW 1214
Biosci. Biotechnol. Biochem.
62
1978-1987
1998
-
-
1
-
-
-
-
3
-
-
1
1
-
2
-
-
1
1
-
-
1
-
3
1
1
-
-
-
1
-
-
3
-
-
-
-
-
1
3
-
-
-
-
-
-
3
-
-
1
1
-
-
-
1
-
-
1
-
3
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-