BRENDA - Enzyme Database show
show all sequences of 1.3.7.7

Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction

Reinbothe, C.; El Bakkouri, M.; Buhr, F.; Muraki, N.; Nomata, J.; Kurisu, G.; Fujita, Y.; Reinbothe, S.; Trends Plant Sci. 15, 614-624 (2010)

Data extracted from this reference:

Crystallization (Commentary)
Crystallization
Organism
catalytic component NB-protein, both in thePchlide-bound and Pchlide-free states, X-ray diffraction structure determination at 2.3 A and 2.8 A resolution, respectively
Rhodobacter capsulatus
L-protein in the MgADP-bound form, X-ray diffraction structure determination at 1.6 A resolution
Rhodobacter sphaeroides
Engineering
Amino acid exchange
Commentary
Organism
D36A
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, D36A retains only 13% of wild-type activity
Rhodobacter capsulatus
D36C
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, catalytically inactive mutant
Rhodobacter capsulatus
D36S
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, catalytically inactive mutant
Rhodobacter capsulatus
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe2+
in [4Fe–4S] clusters
Chlorobaculum tepidum
Fe2+
in [4Fe-4S] clusters
Chloroflexus aurantiacus
Fe2+
in [4Fe-4S] clusters
Heliobacillus mobilis
Fe2+
in [4Fe-4S] clusters
Prochlorococcus marinus
Fe2+
in [4Fe–4S] clusters
Rhodobacter capsulatus
Fe2+
in [4Fe-4S] clusters
Rhodobacter sphaeroides
Mg2+
required
Chlorobaculum tepidum
Mg2+
required
Chloroflexus aurantiacus
Mg2+
required
Heliobacillus mobilis
Mg2+
required
Prochlorococcus marinus
Mg2+
required
Rhodobacter capsulatus
Mg2+
required
Rhodobacter sphaeroides
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Rhodobacter sphaeroides
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Rhodobacter capsulatus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Chloroflexus aurantiacus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Prochlorococcus marinus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Chlorobaculum tepidum
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Heliobacillus mobilis
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Chlorobaculum tepidum
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Chloroflexus aurantiacus
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Heliobacillus mobilis
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Prochlorococcus marinus
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Rhodobacter capsulatus
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Rhodobacter sphaeroides
-
three subunits of DPOR, encoded by genes bchL, bchN and bchB
-
Reaction
Reaction
Commentary
Organism
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Chlorobaculum tepidum
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Chloroflexus aurantiacus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Heliobacillus mobilis
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Prochlorococcus marinus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Rhodobacter capsulatus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
reaction mechanism and structure-function relationship, overview
Rhodobacter sphaeroides
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Rhodobacter sphaeroides
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Rhodobacter capsulatus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Chloroflexus aurantiacus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Prochlorococcus marinus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Chlorobaculum tepidum
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Heliobacillus mobilis
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
Subunits
Subunits
Commentary
Organism
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Chlorobaculum tepidum
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Chloroflexus aurantiacus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Heliobacillus mobilis
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Prochlorococcus marinus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview. The NB-cluster is unique because it is coordinated by three Cys residues from BchN (BchN-Cys26, BchN-Cys51, BchN-Cys112) and one Asp residue from BchB (BchB-Asp36)
Rhodobacter capsulatus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN–BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Rhodobacter sphaeroides
Cofactor
Cofactor
Commentary
Organism
Structure
ATP
-
Chlorobaculum tepidum
ATP
-
Chloroflexus aurantiacus
ATP
-
Heliobacillus mobilis
ATP
-
Prochlorococcus marinus
ATP
-
Rhodobacter capsulatus
ATP
-
Rhodobacter sphaeroides
Ferredoxin
-
Chlorobaculum tepidum
Ferredoxin
-
Chloroflexus aurantiacus
Ferredoxin
-
Heliobacillus mobilis
Ferredoxin
-
Prochlorococcus marinus
Ferredoxin
-
Rhodobacter capsulatus
Ferredoxin
-
Rhodobacter sphaeroides
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
ATP
-
Chlorobaculum tepidum
ATP
-
Chloroflexus aurantiacus
ATP
-
Heliobacillus mobilis
ATP
-
Prochlorococcus marinus
ATP
-
Rhodobacter capsulatus
ATP
-
Rhodobacter sphaeroides
Ferredoxin
-
Chlorobaculum tepidum
Ferredoxin
-
Chloroflexus aurantiacus
Ferredoxin
-
Heliobacillus mobilis
Ferredoxin
-
Prochlorococcus marinus
Ferredoxin
-
Rhodobacter capsulatus
Ferredoxin
-
Rhodobacter sphaeroides
Crystallization (Commentary) (protein specific)
Crystallization
Organism
catalytic component NB-protein, both in thePchlide-bound and Pchlide-free states, X-ray diffraction structure determination at 2.3 A and 2.8 A resolution, respectively
Rhodobacter capsulatus
L-protein in the MgADP-bound form, X-ray diffraction structure determination at 1.6 A resolution
Rhodobacter sphaeroides
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
D36A
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, D36A retains only 13% of wild-type activity
Rhodobacter capsulatus
D36C
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, catalytically inactive mutant
Rhodobacter capsulatus
D36S
site-directed mutagenesis, the mutant subunit B forms a complex with subunit N, indicating that Asp36 is not necessary for complex formation, catalytically inactive mutant
Rhodobacter capsulatus
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe2+
in [4Fe–4S] clusters
Chlorobaculum tepidum
Fe2+
in [4Fe-4S] clusters
Chloroflexus aurantiacus
Fe2+
in [4Fe-4S] clusters
Heliobacillus mobilis
Fe2+
in [4Fe-4S] clusters
Prochlorococcus marinus
Fe2+
in [4Fe–4S] clusters
Rhodobacter capsulatus
Fe2+
in [4Fe-4S] clusters
Rhodobacter sphaeroides
Mg2+
required
Chlorobaculum tepidum
Mg2+
required
Chloroflexus aurantiacus
Mg2+
required
Heliobacillus mobilis
Mg2+
required
Prochlorococcus marinus
Mg2+
required
Rhodobacter capsulatus
Mg2+
required
Rhodobacter sphaeroides
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Rhodobacter sphaeroides
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Rhodobacter capsulatus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Chloroflexus aurantiacus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Prochlorococcus marinus
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Chlorobaculum tepidum
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
Heliobacillus mobilis
-
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Rhodobacter sphaeroides
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Rhodobacter capsulatus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Chloroflexus aurantiacus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Prochlorococcus marinus
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Chlorobaculum tepidum
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
protochlorophyllide a + reduced ferredoxin + 2 ATP + 2 H2O
-
726526
Heliobacillus mobilis
chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Chlorobaculum tepidum
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Chloroflexus aurantiacus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Heliobacillus mobilis
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Prochlorococcus marinus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN-BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview. The NB-cluster is unique because it is coordinated by three Cys residues from BchN (BchN-Cys26, BchN-Cys51, BchN-Cys112) and one Asp residue from BchB (BchB-Asp36)
Rhodobacter capsulatus
More
DPOR consists of two components: a reductase component designated L-protein (a BchL dimer) and a catalytic component named NB-protein (a BchN–BchB heterotetramer), structure analysis and comparison to the nitrogenase complex, overview
Rhodobacter sphaeroides
General Information
General Information
Commentary
Organism
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Chlorobaculum tepidum
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Chloroflexus aurantiacus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Heliobacillus mobilis
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Prochlorococcus marinus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Rhodobacter capsulatus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, overview
Rhodobacter sphaeroides
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Chlorobaculum tepidum
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Chloroflexus aurantiacus
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Heliobacillus mobilis
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Rhodobacter capsulatus
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants
Chlorobaculum tepidum
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants
Chloroflexus aurantiacus
additional information
some purple bacteria contain Bchl b, and heliobacteria such as Heliobacillus mobilis contain Bchl g, as compared to Chl a and Chl b of higher plants
Heliobacillus mobilis
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants. Residue Asp36 is not necessary for ezyme complex formation but for enzyme activity. Subunit BchB possesses a unique C-terminal region consisting of approximately 100 amino acid residues (Phe422-Arg525), which is probably important for protochlorophyllide reduction
Rhodobacter capsulatus
General Information (protein specific)
General Information
Commentary
Organism
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Chlorobaculum tepidum
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Chloroflexus aurantiacus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Heliobacillus mobilis
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Prochlorococcus marinus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, ooverview
Rhodobacter capsulatus
evolution
cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms use an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase for chlorophyll biosynthesis, besides a light-dependent enzyme, mechanisms of protochlorophyllide a reduction in photosynthetic organisms, overview
Rhodobacter sphaeroides
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Chlorobaculum tepidum
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Chloroflexus aurantiacus
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Heliobacillus mobilis
metabolism
the three-subunit enzyme dubbed DPOR operates in the synthesis of Bchls a, b, and g
Rhodobacter capsulatus
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants
Chlorobaculum tepidum
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants
Chloroflexus aurantiacus
additional information
some purple bacteria contain Bchl b, and heliobacteria such as Heliobacillus mobilis contain Bchl g, as compared to Chl a and Chl b of higher plants
Heliobacillus mobilis
additional information
the organism contains another type of Chl, bacteriochlorophyll (Bchl) a, as compared to Chl a and Chl b of higher plants. Residue Asp36 is not necessary for ezyme complex formation but for enzyme activity. Subunit BchB possesses a unique C-terminal region consisting of approximately 100 amino acid residues (Phe422-Arg525), which is probably important for protochlorophyllide reduction
Rhodobacter capsulatus
Other publictions for EC 1.3.7.7
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
743315
Zhang
The SWI2/SNF2 chromatin-remod ...
Arabidopsis thaliana
Mol. Plant
10
155-167
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
741827
Nomata
Stoichiometry of ATP hydrolys ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
Biochem. Biophys. Res. Commun.
470
704-709
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
743401
Silva
With or without light compari ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
PeerJ
2
e551
2014
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
726255
Kopecna
Inhibition of chlorophyll bios ...
Synechocystis sp.
Planta
237
497-508
2013
-
-
-
-
1
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
726394
Moser
Structure of ADP-aluminium flu ...
Prochlorococcus marinus
Proc. Natl. Acad. Sci. USA
110
2094-2098
2013
-
-
-
1
-
-
-
-
-
2
-
1
-
6
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
725926
Nazir
Chloroplast-encoded chlB gene ...
Pinus thunbergii
Mol. Biol. Rep.
39
10637-10646
2012
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
712026
Kondo
EPR study of 1Asp-3Cys ligated ...
Rhodobacter capsulatus
FEBS Lett.
585
214-218
2011
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
725877
Moser
Methods for nitrogenase-like d ...
Prochlorococcus marinus
Methods Mol. Biol.
766
129-143
2011
-
-
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
712465
Broecker
Crystal structure of the nitro ...
Thermosynechococcus elongatus
J. Biol. Chem.
285
27336-27345
2010
-
-
1
1
2
-
-
-
-
2
-
1
-
1
-
-
1
-
-
-
-
-
3
2
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
1
2
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713102
Muraki
X-ray crystal structure of the ...
Rhodobacter capsulatus, Rhodobacter capsulatus DB176
Nature
465
110-114
2010
-
-
1
1
7
-
1
-
-
2
-
2
-
3
-
-
1
1
-
-
2
-
10
2
-
-
-
-
-
-
-
3
-
-
-
-
-
1
3
1
7
-
-
1
-
-
-
2
-
2
-
-
-
1
-
-
2
-
10
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
725412
Broecker
Biosynthesis of (bacterio)chlo ...
Prochlorococcus marinus
J. Biol. Chem.
285
8268-8277
2010
-
-
-
-
1
-
-
-
-
1
6
2
-
1
-
-
-
-
-
-
-
-
3
1
1
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
6
2
-
-
-
-
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
1
1
-
-
-
726104
Breznenova¡
-
Light-independent accumulation ...
Pinus mugo, Pinus sylvestris
Photosynthetica
48
16-22
2010
-
-
2
-
-
-
-
-
2
-
-
2
-
2
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
2
4
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
726526
Reinbothe
Chlorophyll biosynthesis: spot ...
Chlorobaculum tepidum, Chloroflexus aurantiacus, Heliobacillus mobilis, Prochlorococcus marinus, Rhodobacter capsulatus, Rhodobacter sphaeroides
Trends Plant Sci.
15
614-624
2010
-
-
-
2
3
-
-
-
-
12
-
6
-
12
-
-
-
6
-
-
-
-
6
6
-
-
-
-
-
-
-
12
-
-
-
-
-
-
12
2
3
-
-
-
-
-
-
12
-
6
-
-
-
-
-
-
-
-
6
6
-
-
-
-
-
-
-
-
-
14
14
-
-
-
700718
Shui
Light-dependent and light-inde ...
Microchaete diplosiphon
Plant Cell Physiol.
50
1507-1521
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
2
-
-
6
-
-
686758
Nomata
NB-protein (BchN-BchB) of dark ...
Rhodobacter capsulatus
FEBS Lett.
582
1346-1350
2008
-
-
-
-
-
-
-
-
-
1
-
-
-
2
1
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
711198
Sarma
Crystal structure of the L pro ...
Rhodobacter sphaeroides
Biochemistry
47
13004-13015
2008
-
-
1
1
-
-
-
-
-
1
2
-
-
3
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
1
-
-
-
-
-
-
-
1
2
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
672764
Shi
Characterization of three gene ...
Auxenochlorella protothecoides
Biotechnol. Prog.
22
1050-1055
2006
-
-
1
-
-
-
-
-
1
-
3
1
-
8
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
1
-
3
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
1
1
-
-
712984
Kusumi
Proceedings of the SMBE Tri-Na ...
Chamaecyparis lawsoniana, Chamaecyparis obtusa, Chamaecyparis pisifera, Cryptomeria japonica, Cunninghamia lanceolata, Cupressus sempervirens, Glyptostrobus pensilis, Juniperus chinensis, Juniperus rigida, Metasequoia glyptostroboides, no activity in Thuja occidentalis, no activity in Thuja plicata, no activity in Thuja standishii, Platycladus orientalis, Sequoiadendron giganteum, Sequoia sempervirens, Taxodium distichum, Thujopsis dolabrata
Mol. Biol. Evol.
23
941-948
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
20
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15
15
-
-
-
672324
Nomata
Overexpression and characteriz ...
Rhodobacter capsulatus
Biochim. Biophys. Acta
1708
229-237
2005
-
-
1
-
-
-
-
1
-
-
8
-
-
2
-
-
1
-
-
-
-
2
1
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
8
-
-
-
-
1
-
-
-
2
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713305
Raskin
Experimental approach to eluci ...
no activity in Hordeum vulgare
Plant Physiol.
133
25-28
2003
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
393862
Fujita
Reconstitution of light-indepe ...
Rhodobacter capsulatus
J. Biol. Chem.
275
23583-23588
2000
1
-
1
-
-
-
-
-
-
-
6
-
-
3
-
-
1
-
-
-
-
-
1
2
-
-
-
-
-
-
-
1
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
-
6
-
-
-
-
1
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713293
Skinner
Differential expression of gen ...
Pinus taeda
Plant Mol. Biol.
39
577-592
1999
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
713252
Fujita
Cloning of the gene encoding a ...
Leptolyngbya boryana
Plant Cell Physiol.
39
177-185
1998
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
713251
Fujita
Identification of the chlB gen ...
Leptolyngbya boryana
Plant Cell Physiol.
37
313-323
1996
-
-
1
-
-
-
-
-
1
-
2
1
-
5
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
2
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
712268
Burke
bchFNBH bacteriochlorophyll sy ...
Rhodobacter capsulatus, Rhodobacter capsulatus SB1003
J. Bacteriol.
175
2414-2422
1993
-
-
-
-
-
-
-
-
-
-
-
4
-
10
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-