BRENDA - Enzyme Database show
show all sequences of 1.3.7.7

Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum

Nazir, S.; Khan, M.S.; Mol. Biol. Rep. 39, 10637-10646 (2012)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene chlB, stable integration of the chlB gene from Pinus thunbergii into the chloroplast genome of tobacco, the ChlB subunit in transgenic Nicotana tabacum var. Petit Havana causes a early development of chlorophyll pigments in leaves of the transgenic shoots compared to the wild type shoots and altered root development. The chlB gene is involved, directly or indirectly, in the root development of tobacco, phenotype, overviews
Pinus thunbergii
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
-
Pinus thunbergii
9507
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Pinus thunbergii
-
gene chlB encoding the ChlB subunit of the enzyme complex
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
leaf
-
Pinus thunbergii
-
Subunits
Subunits
Commentary
Organism
More
the light-independent enzyme consists of three subunit types, ChlL, ChlN and ChlB. ChlB in photosynthetic bacteria and plastids is the major subunit that catalyzes the reduction of protochlorophyllide to chlorophyllide
Pinus thunbergii
Cloned(Commentary) (protein specific)
Commentary
Organism
gene chlB, stable integration of the chlB gene from Pinus thunbergii into the chloroplast genome of tobacco, the ChlB subunit in transgenic Nicotana tabacum var. Petit Havana causes a early development of chlorophyll pigments in leaves of the transgenic shoots compared to the wild type shoots and altered root development. The chlB gene is involved, directly or indirectly, in the root development of tobacco, phenotype, overviews
Pinus thunbergii
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
-
Pinus thunbergii
9507
-
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
leaf
-
Pinus thunbergii
-
Subunits (protein specific)
Subunits
Commentary
Organism
More
the light-independent enzyme consists of three subunit types, ChlL, ChlN and ChlB. ChlB in photosynthetic bacteria and plastids is the major subunit that catalyzes the reduction of protochlorophyllide to chlorophyllide
Pinus thunbergii
General Information
General Information
Commentary
Organism
metabolism
chlorophyll biosynthesis is catalyzed by two multi subunit enzymes; a light-dependent and a light-independent protochlorophyllide oxidoreductase
Pinus thunbergii
General Information (protein specific)
General Information
Commentary
Organism
metabolism
chlorophyll biosynthesis is catalyzed by two multi subunit enzymes; a light-dependent and a light-independent protochlorophyllide oxidoreductase
Pinus thunbergii
Other publictions for EC 1.3.7.7
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
743315
Zhang
The SWI2/SNF2 chromatin-remod ...
Arabidopsis thaliana
Mol. Plant
10
155-167
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
741827
Nomata
Stoichiometry of ATP hydrolys ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
Biochem. Biophys. Res. Commun.
470
704-709
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
743401
Silva
With or without light compari ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
PeerJ
2
e551
2014
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
726255
Kopecna
Inhibition of chlorophyll bios ...
Synechocystis sp.
Planta
237
497-508
2013
-
-
-
-
1
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
726394
Moser
Structure of ADP-aluminium flu ...
Prochlorococcus marinus
Proc. Natl. Acad. Sci. USA
110
2094-2098
2013
-
-
-
1
-
-
-
-
-
2
-
1
-
6
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
725926
Nazir
Chloroplast-encoded chlB gene ...
Pinus thunbergii
Mol. Biol. Rep.
39
10637-10646
2012
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
712026
Kondo
EPR study of 1Asp-3Cys ligated ...
Rhodobacter capsulatus
FEBS Lett.
585
214-218
2011
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
725877
Moser
Methods for nitrogenase-like d ...
Prochlorococcus marinus
Methods Mol. Biol.
766
129-143
2011
-
-
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
712465
Broecker
Crystal structure of the nitro ...
Thermosynechococcus elongatus
J. Biol. Chem.
285
27336-27345
2010
-
-
1
1
2
-
-
-
-
2
-
1
-
1
-
-
1
-
-
-
-
-
3
2
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
1
2
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713102
Muraki
X-ray crystal structure of the ...
Rhodobacter capsulatus, Rhodobacter capsulatus DB176
Nature
465
110-114
2010
-
-
1
1
7
-
1
-
-
2
-
2
-
3
-
-
1
1
-
-
2
-
10
2
-
-
-
-
-
-
-
3
-
-
-
-
-
1
3
1
7
-
-
1
-
-
-
2
-
2
-
-
-
1
-
-
2
-
10
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
725412
Broecker
Biosynthesis of (bacterio)chlo ...
Prochlorococcus marinus
J. Biol. Chem.
285
8268-8277
2010
-
-
-
-
1
-
-
-
-
1
6
2
-
1
-
-
-
-
-
-
-
-
3
1
1
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
6
2
-
-
-
-
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
1
1
-
-
-
726104
Breznenovaˇ
-
Light-independent accumulation ...
Pinus mugo, Pinus sylvestris
Photosynthetica
48
16-22
2010
-
-
2
-
-
-
-
-
2
-
-
2
-
2
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
2
4
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
726526
Reinbothe
Chlorophyll biosynthesis: spot ...
Chlorobaculum tepidum, Chloroflexus aurantiacus, Heliobacillus mobilis, Prochlorococcus marinus, Rhodobacter capsulatus, Rhodobacter sphaeroides
Trends Plant Sci.
15
614-624
2010
-
-
-
2
3
-
-
-
-
12
-
6
-
12
-
-
-
6
-
-
-
-
6
6
-
-
-
-
-
-
-
12
-
-
-
-
-
-
12
2
3
-
-
-
-
-
-
12
-
6
-
-
-
-
-
-
-
-
6
6
-
-
-
-
-
-
-
-
-
14
14
-
-
-
700718
Shui
Light-dependent and light-inde ...
Microchaete diplosiphon
Plant Cell Physiol.
50
1507-1521
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
2
-
-
6
-
-
686758
Nomata
NB-protein (BchN-BchB) of dark ...
Rhodobacter capsulatus
FEBS Lett.
582
1346-1350
2008
-
-
-
-
-
-
-
-
-
1
-
-
-
2
1
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
711198
Sarma
Crystal structure of the L pro ...
Rhodobacter sphaeroides
Biochemistry
47
13004-13015
2008
-
-
1
1
-
-
-
-
-
1
2
-
-
3
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
1
-
-
-
-
-
-
-
1
2
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
672764
Shi
Characterization of three gene ...
Auxenochlorella protothecoides
Biotechnol. Prog.
22
1050-1055
2006
-
-
1
-
-
-
-
-
1
-
3
1
-
8
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
1
-
3
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
1
1
-
-
712984
Kusumi
Proceedings of the SMBE Tri-Na ...
Chamaecyparis lawsoniana, Chamaecyparis obtusa, Chamaecyparis pisifera, Cryptomeria japonica, Cunninghamia lanceolata, Cupressus sempervirens, Glyptostrobus pensilis, Juniperus chinensis, Juniperus rigida, Metasequoia glyptostroboides, no activity in Thuja occidentalis, no activity in Thuja plicata, no activity in Thuja standishii, Platycladus orientalis, Sequoiadendron giganteum, Sequoia sempervirens, Taxodium distichum, Thujopsis dolabrata
Mol. Biol. Evol.
23
941-948
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
20
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
15
15
-
-
-
672324
Nomata
Overexpression and characteriz ...
Rhodobacter capsulatus
Biochim. Biophys. Acta
1708
229-237
2005
-
-
1
-
-
-
-
1
-
-
8
-
-
2
-
-
1
-
-
-
-
2
1
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
8
-
-
-
-
1
-
-
-
2
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713305
Raskin
Experimental approach to eluci ...
no activity in Hordeum vulgare
Plant Physiol.
133
25-28
2003
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
393862
Fujita
Reconstitution of light-indepe ...
Rhodobacter capsulatus
J. Biol. Chem.
275
23583-23588
2000
1
-
1
-
-
-
-
-
-
-
6
-
-
3
-
-
1
-
-
-
-
-
1
2
-
-
-
-
-
-
-
1
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
-
6
-
-
-
-
1
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713293
Skinner
Differential expression of gen ...
Pinus taeda
Plant Mol. Biol.
39
577-592
1999
-
-
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
713252
Fujita
Cloning of the gene encoding a ...
Leptolyngbya boryana
Plant Cell Physiol.
39
177-185
1998
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
713251
Fujita
Identification of the chlB gen ...
Leptolyngbya boryana
Plant Cell Physiol.
37
313-323
1996
-
-
1
-
-
-
-
-
1
-
2
1
-
5
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
2
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
712268
Burke
bchFNBH bacteriochlorophyll sy ...
Rhodobacter capsulatus, Rhodobacter capsulatus SB1003
J. Bacteriol.
175
2414-2422
1993
-
-
-
-
-
-
-
-
-
-
-
4
-
10
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-