BRENDA - Enzyme Database show
show all sequences of 1.21.98.3

Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor

Gough, S.P.; Petersen, B.O.; Duus, J.O.; Proc. Natl. Acad. Sci. USA 97, 6908-6913 (2000)

Data extracted from this reference:

Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Rhodobacter capsulatus
P26168
-
-
Rhodobacter capsulatus ATCC BAA-309
P26168
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus ATCC BAA-309
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus
3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus ATCC BAA-309
3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + L-methionine
-
-
-
?
magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine + H2O
-
739563
Rhodobacter capsulatus
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine + H2O
-
739563
Rhodobacter capsulatus ATCC BAA-309
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
Cobalamin
vitamin B12-requiring mutants of the bluE and bluB genes of Rhodobacter capsulatus, grown without B12, accumulate Mg-protoporphyrin monomethyl ester and its 3-vinyl-8-ethyl derivative. Cyclase activity in the B12-dependent mutants requires vitamin B12 but not protein synthesis
Rhodobacter capsulatus
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
Cobalamin
vitamin B12-requiring mutants of the bluE and bluB genes of Rhodobacter capsulatus, grown without B12, accumulate Mg-protoporphyrin monomethyl ester and its 3-vinyl-8-ethyl derivative. Cyclase activity in the B12-dependent mutants requires vitamin B12 but not protein synthesis
Rhodobacter capsulatus
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus ATCC BAA-309
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus
3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + L-methionine
-
-
-
?
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine
-
739563
Rhodobacter capsulatus ATCC BAA-309
3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + L-methionine
-
-
-
?
magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine + H2O
-
739563
Rhodobacter capsulatus
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine + H2O
-
739563
Rhodobacter capsulatus ATCC BAA-309
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + 5'-deoxyadenosine + L-methionine
-
-
-
?
General Information
General Information
Commentary
Organism
metabolism
proposed reaction mechanism for the Mg-protoporphyrin monomethyl ester-cyclase reaction starts with adenosylcobalamin forming the adenosyl radical, which leads to withdrawal of a hydrogen atom and formation of the benzylic-type 131-radical of Mg-protoporphyrin monomethyl ester. Withdrawal of an electron gives the 131-cation of Mg-protoporphyrin monomethyl ester. Hydroxyl ion attack on the cation gives 131-hydroxy-Mg-protoporphyrin monomethyl ester. Withdrawal of three hydrogen atoms leads successively to 131-keto-Mg-protoporphyrin monomethyl ester, its 132-Mg-protoporphyrin monomethyl ester, and cyclization to protochlorophyllide
Rhodobacter capsulatus
General Information (protein specific)
General Information
Commentary
Organism
metabolism
proposed reaction mechanism for the Mg-protoporphyrin monomethyl ester-cyclase reaction starts with adenosylcobalamin forming the adenosyl radical, which leads to withdrawal of a hydrogen atom and formation of the benzylic-type 131-radical of Mg-protoporphyrin monomethyl ester. Withdrawal of an electron gives the 131-cation of Mg-protoporphyrin monomethyl ester. Hydroxyl ion attack on the cation gives 131-hydroxy-Mg-protoporphyrin monomethyl ester. Withdrawal of three hydrogen atoms leads successively to 131-keto-Mg-protoporphyrin monomethyl ester, its 132-Mg-protoporphyrin monomethyl ester, and cyclization to protochlorophyllide
Rhodobacter capsulatus
Other publictions for EC 1.21.98.3
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
737606
Yamanashi
Identification of the chlE gen ...
Cyanothece sp. PCC 7425, Cyanothece sp. PCC 7822
Biochem. Biophys. Res. Commun.
463
1328-1333
2015
-
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
744228
Yamanashi
Identification of the chlE ge ...
Cyanothece sp. PCC 7425, Cyanothece sp. PCC 7822, Rhodobacter capsulatus, Rhodobacter capsulatus SB1003
Biochem. Biophys. Res. Commun.
463
1328-1333
2015
-
-
3
-
1
-
-
-
-
-
-
4
-
9
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
3
-
-
-
-
-
3
3
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
726735
Boldareva-Nuianzina
Distribution and origin of oxy ...
Citromicrobium sp. CV44, Methylobacteriaceae bacterium RM11-8-1, Rhodobaca bogoriensis, Rhodobaca bogoriensis DSM 18756, Rhodobacterales bacterium chep-kr, Roseinatronobacter monicus, Roseinatronobacter sp. khil, Roseobacter sp., Roseobacter sp. B09, Roseobacter sp. Zun_kholvo
Appl. Environ. Microbiol.
79
2596-2604
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
8
-
-
-
689645
Gough
A new method for isolating phy ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
Plant Physiol. Biochem.
45
932-936
2007
-
1
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
738567
Ouchane
Aerobic and anaerobic Mg-proto ...
Rubrivivax gelatinosus
J. Biol. Chem.
279
6385-6394
2004
-
-
1
-
-
-
-
-
-
-
3
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
3
-
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
1
1
-
-
739563
Gough
Anaerobic chlorophyll isocycli ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
Proc. Natl. Acad. Sci. USA
97
6908-6913
2000
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
738495
Yang
Rhodobacter capsulatus genes i ...
Rhodobacter capsulatus, Rhodobacter capsulatus ATCC BAA-309
J. Bacteriol.
172
5001-5010
1990
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-