Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.2.1.57 extracted from

  • Lan, E.; Ro, S.; Liao, J.
    Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria (2013), Energy Environ. Sci., 6, 2672-2681 .
No PubMed abstract available

Cloned(Commentary)

Cloned (Comment) Organism
gene bldh, recombinant expression in Escherichia coli strain JCL166, strain JCL166 cannot grow anaerobically unless complemented by an exogenous fermentation pathway such as n-butanol biosynthesis Synechococcus elongatus
gene bldh, recombinant expression in Escherichia coli strain JCL166, strain JCL166 cannot grow anaerobically unless complemented by an exogenous fermentation pathway such as n-butanol biosynthesis. Recombinant coexpression of PduP with the enzymes of the n-butanol synthesis pathway in Synechococcus elongatus strain PCC 7942 results in autotrophic n-butanol production Clostridium saccharoperbutylacetonicum
gene pduP, recombinant expression in Escherichia coli strain JCL166, strain JCL166 cannot grow anaerobically unless complemented by an exogenous fermentation pathway such as n-butanol biosynthesis. Recombinant coexpression of PduP with the enzymes of the n-butanol synthesis pathway in Synechococcus elongatus strain PCC 7942 results in autotrophic n-butanol production. PduP from Lactobacillus brevis produces more n-butanol than ethanol Levilactobacillus brevis

Protein Variants

Protein Variants Comment Organism
additional information design of a coenzyme A (CoA) dependent n-butanol biosynthesis pathway tailored to the metabolic physiology of the cyanobacterium Synechococcus elongatus PCC 7942 by incorporating an ATP driving force and a kinetically irreversible trap. Oxygen-sensitive CoA-acylating butyraldehyde dehydrogenase (Bldh) is exchanged for the oxygen-tolerant PduP from Salmonella enterica. Replacing Bldh with PduP in the n-butanol synthesis pathway results in n-butanol production to a cumulative titer of 404 mg/l with peak productivity of 51 mg/l per day, exceeding the base strain by 20fold. Anaerobic growth rescue of Escherichia coli strain JCL166 by overexpression of the Clostridium butanol pathway with different aldehyde dehydrogenases PduP Synechococcus elongatus

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information no Michaelis-Menten behaviour Clostridium saccharoperbutylacetonicum
0.076
-
acetyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis
0.534
-
butanoyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
acetyl-CoA + NADH + H+ Levilactobacillus brevis
-
acetaldehyde + CoA + NAD+
-
r
acetyl-CoA + NADH + H+ Clostridium saccharoperbutylacetonicum low activity acetaldehyde + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+ Levilactobacillus brevis
-
butanal + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+ Synechococcus elongatus
-
butanal + CoA + NAD+
-
?
butanoyl-CoA + NADH + H+ Clostridium saccharoperbutylacetonicum best substrate butanal + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+ Synechococcus elongatus PCC 7942
-
butanal + CoA + NAD+
-
?

Organism

Organism UniProt Comment Textmining
Clostridium saccharoperbutylacetonicum
-
-
-
Levilactobacillus brevis
-
-
-
Synechococcus elongatus
-
-
-
Synechococcus elongatus PCC 7942
-
-
-

Oxidation Stability

Oxidation Stability Organism
oxygen sensitivity of CoA-acylating aldehyde dehydrogenase Synechococcus elongatus
the enzyme is oxygen-tolerant Levilactobacillus brevis
the enzyme is oxygen-tolerant Clostridium saccharoperbutylacetonicum

Specific Activity [micromol/min/mg]

Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
0.49
-
with butanoyl-CoA, pH 7.15, 30°C Clostridium saccharoperbutylacetonicum
2.5
-
with butanoyl-CoA, pH 7.15, 30°C Levilactobacillus brevis

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
acetyl-CoA + NADH + H+
-
Levilactobacillus brevis acetaldehyde + CoA + NAD+
-
r
acetyl-CoA + NADH + H+ low activity Clostridium saccharoperbutylacetonicum acetaldehyde + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+
-
Levilactobacillus brevis butanal + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+
-
Synechococcus elongatus butanal + CoA + NAD+
-
?
butanoyl-CoA + NADH + H+ best substrate Clostridium saccharoperbutylacetonicum butanal + CoA + NAD+
-
r
butanoyl-CoA + NADH + H+
-
Synechococcus elongatus PCC 7942 butanal + CoA + NAD+
-
?
additional information substrate chain length specificity of the enzyme is C2-C12, highest activity with C6 substrate, overview Levilactobacillus brevis ?
-
?

Synonyms

Synonyms Comment Organism
Bldh
-
Synechococcus elongatus
Bldh
-
Clostridium saccharoperbutylacetonicum
CoA-acylating aldehyde dehydrogenase
-
Levilactobacillus brevis
CoA-acylating aldehyde dehydrogenase
-
Synechococcus elongatus
CoA-acylating aldehyde dehydrogenase
-
Clostridium saccharoperbutylacetonicum
CoA-acylating butyraldehyde dehydrogenase
-
Synechococcus elongatus
coenzyme A-acylating aldehyde dehydrogenase
-
Levilactobacillus brevis
coenzyme A-acylating aldehyde dehydrogenase
-
Synechococcus elongatus
coenzyme A-acylating aldehyde dehydrogenase
-
Clostridium saccharoperbutylacetonicum
PduP
-
Levilactobacillus brevis

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
30
-
assay at Levilactobacillus brevis
30
-
assay at Clostridium saccharoperbutylacetonicum

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
0.26
-
acetyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis
3.37
-
butanoyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
7.15
-
assay at Levilactobacillus brevis
7.15
-
assay at Clostridium saccharoperbutylacetonicum

Cofactor

Cofactor Comment Organism Structure
NADH
-
Levilactobacillus brevis
NADH
-
Synechococcus elongatus
NADH
-
Clostridium saccharoperbutylacetonicum

General Information

General Information Comment Organism
metabolism the oxygen sensitivity of CoA-acylating aldehyde dehydrogenase appears to be a key limiting factor for cyanobacteria to produce alcohols through the CoA-dependent route Levilactobacillus brevis
metabolism the oxygen sensitivity of CoA-acylating aldehyde dehydrogenase appears to be a key limiting factor for cyanobacteria to produce alcohols through the CoA-dependent route Synechococcus elongatus
metabolism the oxygen sensitivity of CoA-acylating aldehyde dehydrogenase appears to be a key limiting factor for cyanobacteria to produce alcohols through the CoA-dependent route Clostridium saccharoperbutylacetonicum

kcat/KM [mM/s]

kcat/KM Value [1/mMs-1] kcat/KM Value Maximum [1/mMs-1] Substrate Comment Organism Structure
3
-
acetyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis
6
-
butanoyl-CoA recombinant enzyme, pH 7.15, 30°C Levilactobacillus brevis