BRENDA - Enzyme Database
show all sequences of 1.13.11.68

SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato

Vogel, J.T.; Walter, M.H.; Giavalisco, P.; Lytovchenko, A.; Kohlen, W.; Charnikhova, T.; Simkin, A.J.; Goulet, C.; Strack, D.; Bouwmeester, H.J.; Fernie, A.R.; Klee, H.J.; Plant J. 61, 300-311 (2010)

Data extracted from this reference:

Organism
Organism
UniProt
Commentary
Textmining
Phelipanche ramosa
-
-
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
fruit
green
Phelipanche ramosa
-
root
-
Phelipanche ramosa
-
stem
-
Phelipanche ramosa
-
Synonyms
Synonyms
Commentary
Organism
MAX3/CCD7
-
Phelipanche ramosa
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
fruit
green
Phelipanche ramosa
-
root
-
Phelipanche ramosa
-
stem
-
Phelipanche ramosa
-
General Information
General Information
Commentary
Organism
malfunction
tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. A metabolomic screen is conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes are observed. Targeted analysis of the same plants reveal significantly decreased levels of strigolactone. There are no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds is reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Upon mycorrhizal colonization, C13 cyclohexenone and C14 mycorradicin apocarotenoid levels are greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis
Phelipanche ramosa
General Information (protein specific)
General Information
Commentary
Organism
malfunction
tomato plants expressing a SlCCD7 antisense construct display greatly increased branching. A metabolomic screen is conducted. With the exception of a reduction of stem amino acid content in the transgenic lines, no major changes are observed. Targeted analysis of the same plants reveal significantly decreased levels of strigolactone. There are no significant changes in root carotenoids, indicating that relatively little substrate is required to produce the bioactive strigolactones. The germination rate of Orobanche ramosa seeds is reduced by up to 90% on application of extract from the SlCCD7 antisense lines, compared with the wild type. Upon mycorrhizal colonization, C13 cyclohexenone and C14 mycorradicin apocarotenoid levels are greatly reduced in the roots of the antisense lines, implicating SlCCD7 in their biosynthesis
Phelipanche ramosa
Other publictions for EC 1.13.11.68
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
745435
Priya
Molecular modeling and dynami ...
Arabidopsis thaliana
J. Cell. Biochem.
118
2712-2721
2017
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
745469
Bruno
Enzymatic study on AtCCD4 and ...
Arabidopsis thaliana
J. Exp. Bot.
67
5993-6005
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
5
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
5
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
746156
Pan
ZmCCD7/ZpCCD7 encodes a carot ...
Zea mays, Zea mays B73, Zea mays subsp. parviglumis
Planta
243
1407-1418
2016
-
-
2
-
-
-
-
-
2
-
-
3
-
5
-
-
-
-
-
6
-
-
3
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
3
-
-
-
-
-
6
-
-
3
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
744876
Harrison
Biochemical characterization ...
Arabidopsis thaliana
FEBS J.
282
3986-4000
2015
-
-
1
-
-
-
1
-
-
-
-
1
-
3
-
-
1
-
-
-
-
-
2
-
2
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
744603
Rubio-Moraga
Apical dominance in saffron a ...
Crocus sativus
BMC Plant Biol.
14
171
2014
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
5
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
744898
Bruno
On the substrate- and stereos ...
Arabidopsis thaliana, Pisum sativum
FEBS Lett.
588
1802-1807
2014
-
-
2
-
-
-
-
6
-
-
-
6
-
5
-
-
-
-
-
-
-
-
12
-
4
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
6
-
-
-
6
-
-
-
-
-
-
-
-
12
-
2
-
-
-
-
-
-
-
-
2
2
-
-
-
746148
Aly
Gene silencing of CCD7 and CC ...
Phelipanche aegyptiaca
Plant Signal. Behav.
9
e29376
2014
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
6
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
721057
Alder
The path from beta-carotene to ...
Arabidopsis thaliana, Oryza sativa, Pisum sativum
Science
335
1348-1351
2012
-
-
3
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
3
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720559
Ledger
Modified CAROTENOID CLEAVAGE D ...
Actinidia chinensis
New Phytol.
188
803-813
2010
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
728478
Vogel
SlCCD7 controls strigolactone ...
Phelipanche ramosa
Plant J.
61
300-311
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
3
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
720702
Auldridge
Characterization of three memb ...
Arabidopsis thaliana
Plant J.
45
982-993
2006
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
719823
Schwartz
The biochemical characterizati ...
Arabidopsis thaliana
J. Biol. Chem.
279
46940-46945
2004
1
-
-
-
1
-
-
1
1
-
-
-
1
6
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-