BRENDA - Enzyme Database show
show all sequences of 1.1.99.21

A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism

Yang, X.P.; Wei, L.J.; Ye, J.B.; Yin, B.; Wei, D.Z.; Arch. Biochem. Biophys. 477, 206-210 (2008)

Data extracted from this reference:

Inhibitors
Inhibitors
Commentary
Organism
Structure
D-sorbose
non-competitive inhibition, sorbitol or phenazine methosulfate as substrates
Gluconobacter oxydans
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0257
-
ubiquinone-2
-
Gluconobacter oxydans
0.0314
-
phenazine methosulfate
-
Gluconobacter oxydans
16.8
-
D-sorbitol
ubiquinone-2 as electron acceptor
Gluconobacter oxydans
23.2
-
D-sorbitol
phenazine methosulfate as electron acceptor
Gluconobacter oxydans
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Gluconobacter oxydans
-
IFO 3255
-
Purification (Commentary)
Commentary
Organism
by CM-cellulose and sephacryl HR 400 column chromatography
Gluconobacter oxydans
Storage Stability
Storage Stability
Organism
stable at 80°C for more than two months in the presence of 0.1% Tween-20
Gluconobacter oxydans
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-sorbitol + phenazine methosulfate
the catalytic reaction follows an ordered Bi Bi mechanism, the native mSLDH bears two different substrate-binding sites, one for ubiquinone using as electron acceptor and the other for D-sorbitol, in addition to PQQ-binding and Mg2+-binding sites in the catalytic center
684722
Gluconobacter oxydans
?
-
-
-
?
D-sorbitol + ubiquinone-2
-
684722
Gluconobacter oxydans
?
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
additional information
pyrroloquinoline quinine
Gluconobacter oxydans
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
additional information
pyrroloquinoline quinine
Gluconobacter oxydans
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
D-sorbose
non-competitive inhibition, sorbitol or phenazine methosulfate as substrates
Gluconobacter oxydans
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0257
-
ubiquinone-2
-
Gluconobacter oxydans
0.0314
-
phenazine methosulfate
-
Gluconobacter oxydans
16.8
-
D-sorbitol
ubiquinone-2 as electron acceptor
Gluconobacter oxydans
23.2
-
D-sorbitol
phenazine methosulfate as electron acceptor
Gluconobacter oxydans
Purification (Commentary) (protein specific)
Commentary
Organism
by CM-cellulose and sephacryl HR 400 column chromatography
Gluconobacter oxydans
Storage Stability (protein specific)
Storage Stability
Organism
stable at 80°C for more than two months in the presence of 0.1% Tween-20
Gluconobacter oxydans
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
D-sorbitol + phenazine methosulfate
the catalytic reaction follows an ordered Bi Bi mechanism, the native mSLDH bears two different substrate-binding sites, one for ubiquinone using as electron acceptor and the other for D-sorbitol, in addition to PQQ-binding and Mg2+-binding sites in the catalytic center
684722
Gluconobacter oxydans
?
-
-
-
?
D-sorbitol + ubiquinone-2
-
684722
Gluconobacter oxydans
?
-
-
-
?
Other publictions for EC 1.1.99.21
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
739825
Fredslund
Structural characterization of ...
Bradyrhizobium japonicum, Bradyrhizobium japonicum USDA110
Acta Crystallogr. Sect. F
72
846-852
2016
-
-
1
1
-
-
-
-
-
-
-
4
-
2
-
-
1
-
-
-
-
-
4
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
4
-
-
-
1
-
-
-
-
4
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
740006
Selvaraj
-
Structural insights into the b ...
Gluconobacter oxydans
Biochem. Eng. J.
114
244-256
2016
-
-
-
-
-
-
-
1
1
-
-
1
-
1
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
3
3
-
-
-
741426
Kim
A highly efficient sorbitol de ...
Gluconobacter oxydans, Gluconobacter oxydans G624
Sci. Rep.
6
33438
2016
-
-
1
-
2
-
6
2
-
1
1
4
-
5
-
-
1
-
-
-
2
-
6
1
1
1
-
1
1
1
-
3
-
-
-
-
-
1
3
-
2
-
-
6
-
2
-
1
1
4
-
-
-
1
-
-
2
-
6
1
1
1
-
1
1
1
-
-
-
2
2
-
1
1
740961
Xu
Enhanced production of L-sorbo ...
Gluconobacter oxydans, Gluconobacter oxydans WSH-003
Microb. Cell Fact.
13
146
2014
-
1
1
-
1
-
-
-
1
-
-
2
-
4
-
-
-
-
-
-
-
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
724595
Soemphol
Characterization of genes invo ...
Gluconobacter frateurii, Gluconobacter frateurii THD32
Biosci. Biotechnol. Biochem.
76
1497-1505
2012
-
-
-
-
-
-
-
-
1
-
-
2
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
684722
Yang
A pyrroloquinoline quinine-dep ...
Gluconobacter oxydans
Arch. Biochem. Biophys.
477
206-210
2008
-
-
-
-
-
-
1
4
-
-
-
-
-
1
-
-
1
-
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
4
-
-
-
-
-
-
-
1
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685690
Soemphol
Distinct physiological roles o ...
Gluconobacter frateurii
Biosci. Biotechnol. Biochem.
72
842-850
2008
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695746
Yang
Membrane-bound pyrroloquinolin ...
Gluconobacter oxydans, Gluconobacter oxydans M5
Appl. Environ. Microbiol.
74
5250-5253
2008
-
-
1
-
-
-
-
-
-
-
1
-
-
3
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
672655
Toyama
Molecular properties of membra ...
Gluconobacter frateurii
Biosci. Biotechnol. Biochem.
69
1120-1129
2005
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
654267
Matsushita
5-Keto-D-gluconate production ...
Gluconobacter oxydans
Appl. Environ. Microbiol.
69
1959-1966
2003
-
-
-
-
1
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
8
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
8
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
389912
Shinagawa
-
Purification and characterizat ...
Gluconobacter oxydans
Agric. Biol. Chem.
46
135-141
1982
-
-
-
-
-
3
-
1
1
1
4
1
-
1
-
-
1
-
-
-
1
2
4
1
1
-
-
-
1
-
-
3
-
-
-
-
-
-
3
-
-
3
-
-
-
1
1
1
4
1
-
-
-
1
-
-
1
2
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
389913
Shinagawa
-
D-Sorbitol dehydrogenase from ...
Gluconobacter oxydans
Methods Enzymol.
89
141-145
1982
-
-
-
-
-
-
-
1
1
-
4
1
-
1
-
-
1
-
-
-
1
-
4
1
1
-
-
-
1
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
1
1
-
4
1
-
-
-
1
-
-
1
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
657542
Kinast
-
Vierstufige 1-Desoxynojirimyci ...
Gluconobacter oxydans
Angew. Chem.
93
799-800
1981
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-