BRENDA - Enzyme Database
show all sequences of 1.1.98.6

The anaerobic ribonucleotide reductase from Lactococcus lactis. Interactions between the two proteins NrdD and NrdG

Torrents, E.; Eliasson, R.; Wolpher, H.; Graeslund, A.; Reichard, P.; J. Biol. Chem. 276, 33488-33494 (2001) View publication on PubMed

Data extracted from this reference:

Activating Compound
Activating Compound
Commentary
Organism
Structure
ATP
1.5 mM, 500fold increase in reduction rate of CTP, 2.5fold increase for GTP
Lactococcus lactis subsp. cremoris
dGTP
1.5 mM, 20fold increase in reduction rate of ATP
Lactococcus lactis subsp. cremoris
dTTP
1.5 mM, 3fold increase in reduction rate of GTP
Lactococcus lactis subsp. cremoris
additional information
allosteric effectors bind to two separate sites on NrdD, one binding dATP, dGTP, and dTTP and the other binding dATP and ATP. The two sites show an unusually high degree of cooperativity with complex interactions between effectors and a fine-tuning of their physiological effects
Lactococcus lactis subsp. cremoris
Cloned(Commentary)
Cloned (Commentary)
Organism
expression in Escherichia coli
Lactococcus lactis subsp. cremoris
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
84100
-
-
Lactococcus lactis subsp. cremoris
Organism
Organism
UniProt
Commentary
Textmining
Lactococcus lactis subsp. cremoris
Q9ZAX6
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
ATP + formate
-
740670
Lactococcus lactis subsp. cremoris
dATP + CO2 + H2O
-
-
-
?
CTP + formate
-
740670
Lactococcus lactis subsp. cremoris
dCTP + CO2 + H2O
reaction requires both proteins NrdD and NrdG and occurs in two strictly anaerobic steps. During the first step NrdD is activated by S-adenosylmethionine and deazaflavin plus light in a time-dependent reaction. In the second step the actual reduction of CTP by activated NrdD requires dithiothreitol, formate, KCl, and ATP
-
-
?
GTP + formate
-
740670
Lactococcus lactis subsp. cremoris
dGTP + CO2 + H2O
-
-
-
?
additional information
no substrate: CDP
740670
Lactococcus lactis subsp. cremoris
?
-
-
-
?
Subunits
Subunits
Commentary
Organism
?
x * 84100, calculated, x * 74000 and x * 84000, due to truncation of protein at the site of the glycyl radical, SDS-PAGE
Lactococcus lactis subsp. cremoris
Synonyms
Synonyms
Commentary
Organism
anaerobic ribonucleotide reductase
-
Lactococcus lactis subsp. cremoris
nrdD
-
Lactococcus lactis subsp. cremoris
Activating Compound (protein specific)
Activating Compound
Commentary
Organism
Structure
ATP
1.5 mM, 500fold increase in reduction rate of CTP, 2.5fold increase for GTP
Lactococcus lactis subsp. cremoris
dGTP
1.5 mM, 20fold increase in reduction rate of ATP
Lactococcus lactis subsp. cremoris
dTTP
1.5 mM, 3fold increase in reduction rate of GTP
Lactococcus lactis subsp. cremoris
additional information
allosteric effectors bind to two separate sites on NrdD, one binding dATP, dGTP, and dTTP and the other binding dATP and ATP. The two sites show an unusually high degree of cooperativity with complex interactions between effectors and a fine-tuning of their physiological effects
Lactococcus lactis subsp. cremoris
Cloned(Commentary) (protein specific)
Commentary
Organism
expression in Escherichia coli
Lactococcus lactis subsp. cremoris
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
84100
-
-
Lactococcus lactis subsp. cremoris
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
ATP + formate
-
740670
Lactococcus lactis subsp. cremoris
dATP + CO2 + H2O
-
-
-
?
CTP + formate
-
740670
Lactococcus lactis subsp. cremoris
dCTP + CO2 + H2O
reaction requires both proteins NrdD and NrdG and occurs in two strictly anaerobic steps. During the first step NrdD is activated by S-adenosylmethionine and deazaflavin plus light in a time-dependent reaction. In the second step the actual reduction of CTP by activated NrdD requires dithiothreitol, formate, KCl, and ATP
-
-
?
GTP + formate
-
740670
Lactococcus lactis subsp. cremoris
dGTP + CO2 + H2O
-
-
-
?
additional information
no substrate: CDP
740670
Lactococcus lactis subsp. cremoris
?
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
?
x * 84100, calculated, x * 74000 and x * 84000, due to truncation of protein at the site of the glycyl radical, SDS-PAGE
Lactococcus lactis subsp. cremoris
General Information
General Information
Commentary
Organism
physiological function
protein NrdD contains catalytic and allosteric sites and, in its active form, a stable glycyl radical. This radical is generated by NrdG with its [4Fe-4S] cluster and S-adenosylmethionine. NrdD and NrdG anaerobically form a tight alpha2beta2 complex. NrdD alone catalyzes the reduction of CTP with formate as the electron donor and ATP as the allosteric effector. The reaction requires Mg+ and is stimulated by K+ but not by dithiothreitol. NrdD is the actual reductase, and NrdG is an activase
Lactococcus lactis subsp. cremoris
physiological function
proteins NrdG and NrdD together catalyze the reduction of ribonucleoside triphosphates to the corresponding deoxyribonucleotides in the presence of S-adenosylmethionine, reduced flavodoxin or reduced deazaflavin, potassium ions, dithiothreitol, and formate. A [4Fe-4S] cluster is present in reduced NrdG and a glycyl radical in activated NrdD. The two polypeptides of NrdD and the proteins in the NrdD-NrdG complex are only loosely associated. NrdDG is required for strict anaerobic growth of Lactococcus lactis
Lactococcus lactis subsp. cremoris
General Information (protein specific)
General Information
Commentary
Organism
physiological function
protein NrdD contains catalytic and allosteric sites and, in its active form, a stable glycyl radical. This radical is generated by NrdG with its [4Fe-4S] cluster and S-adenosylmethionine. NrdD and NrdG anaerobically form a tight alpha2beta2 complex. NrdD alone catalyzes the reduction of CTP with formate as the electron donor and ATP as the allosteric effector. The reaction requires Mg+ and is stimulated by K+ but not by dithiothreitol. NrdD is the actual reductase, and NrdG is an activase
Lactococcus lactis subsp. cremoris
physiological function
proteins NrdG and NrdD together catalyze the reduction of ribonucleoside triphosphates to the corresponding deoxyribonucleotides in the presence of S-adenosylmethionine, reduced flavodoxin or reduced deazaflavin, potassium ions, dithiothreitol, and formate. A [4Fe-4S] cluster is present in reduced NrdG and a glycyl radical in activated NrdD. The two polypeptides of NrdD and the proteins in the NrdD-NrdG complex are only loosely associated. NrdDG is required for strict anaerobic growth of Lactococcus lactis
Lactococcus lactis subsp. cremoris
Other publictions for EC 1.1.98.6
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
740573
Wei
A chemically competent thiosul ...
Escherichia coli
J. Am. Chem. Soc.
136
9001-9013
2014
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740969
Kirdis
Ribonucleotide reductase class ...
Staphylococcus aureus, Staphylococcus aureus Newman
Microb. Pathog.
43
179-188
2007
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660352
Logan
A metal-binding site in the ca ...
Escherichia virus T4, Escherichia coli
Proc. Natl. Acad. Sci. USA
100
3826-3831
2003
-
-
-
1
4
-
-
-
-
2
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
4
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740670
Torrents
The anaerobic ribonucleotide r ...
Lactococcus lactis subsp. cremoris
J. Biol. Chem.
276
33488-33494
2001
4
-
1
-
-
-
-
-
-
-
1
-
-
5
-
-
-
-
-
-
-
-
4
1
2
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
740895
Cho
-
The substrate reaction mechani ...
Escherichia coli
J. Phys. Chem. B
105
6445-6452
2001
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740665
Andersson
Allosteric regulation of the c ...
Escherichia virus T4
J. Biol. Chem.
275
19443-19448
2000
5
-
-
-
6
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
10
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740666
Andersson
Cysteines involved in radical ...
Escherichia virus T4
J. Biol. Chem.
275
19449-19455
2000
-
-
1
-
10
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740769
Mulliez
Iron-sulfur interconversions i ...
Escherichia coli
J. Biol. Inorg. Chem.
4
614-620
1999
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740662
Olcott
Localization and characterizat ...
Escherichia virus T4
J. Biol. Chem.
273
24853-24860
1998
-
-
1
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740660
Ollagnier
Activation of the anaerobic ri ...
Escherichia coli
J. Biol. Chem.
272
24216-24223
1997
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740659
Ollagnier
The anaerobic Escherichia coli ...
Escherichia coli
J. Biol. Chem.
271
9410-9416
1996
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739975
Eliasson
The mechanism of the anaerobic ...
Escherichia coli
Biochem. Biophys. Res. Commun.
214
28-35
1995
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
741351
Mulliez
Formate is the hydrogen donor ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
92
8759-8762
1995
-
-
-
-
-
-
-
-
-
1
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740656
Eliasson
Allosteric control of the subs ...
Escherichia coli
J. Biol. Chem.
269
26052-26057
1994
-
-
-
-
-
-
2
6
-
-
-
-
-
3
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
6
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740653
Mulliez
An iron-sulfur center and a fr ...
Escherichia coli
J. Biol. Chem.
268
2296-2299
1993
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740651
Eliasson
Characterization of components ...
Escherichia coli
J. Biol. Chem.
267
25541-25547
1992
1
-
-
-
-
-
5
-
-
-
2
-
-
3
-
-
1
-
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
5
-
-
-
-
2
-
-
-
-
1
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
741348
Eliasson
The anaerobic ribonucleoside t ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
87
3314-3318
1990
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-