BRENDA - Enzyme Database show
show all sequences of 1.1.98.6

Cysteines involved in radical generation and catalysis of class III anaerobic ribonucleotide reductase. A protein engineering study of bacteriophage T4 NrdD

Andersson, J.; Westman, M.; Sahlin, M.; Sjoberg, B.M.; J. Biol. Chem. 275, 19449-19455 (2000)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
-
Escherichia virus T4
Engineering
Amino acid exchange
Commentary
Organism
C260S
activity comparable to wild-type, mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C290S
residue participates in the reaction mechanism by forming a transient thiyl radical. Mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C453S
activity comparable to wild-type, mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C543S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C546S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C561S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C564S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C579S
mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C79S
residue participates in the actual reduction of the substrate. Mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
G580A
oxygen-dependent cleavage is not possible in this mutant since no radical can be formed at Ala580
Escherichia virus T4
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia virus T4
P07071
-
-
Cloned(Commentary) (protein specific)
Commentary
Organism
-
Escherichia virus T4
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
C260S
activity comparable to wild-type, mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C290S
residue participates in the reaction mechanism by forming a transient thiyl radical. Mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C453S
activity comparable to wild-type, mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C543S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C546S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C561S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C564S
residue is essential for formation of the glycyl radical
Escherichia virus T4
C579S
mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
C79S
residue participates in the actual reduction of the substrate. Mutant is able to undergo truncation at the site of the glycyl radical when the radical-containing enzyme is exposed to oxygen
Escherichia virus T4
G580A
oxygen-dependent cleavage is not possible in this mutant since no radical can be formed at Ala580
Escherichia virus T4
Other publictions for EC 1.1.98.6
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
740573
Wei
A chemically competent thiosul ...
Escherichia coli
J. Am. Chem. Soc.
136
9001-9013
2014
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740969
Kirdis
Ribonucleotide reductase class ...
Staphylococcus aureus, Staphylococcus aureus Newman
Microb. Pathog.
43
179-188
2007
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660352
Logan
A metal-binding site in the ca ...
Escherichia coli, Escherichia virus T4
Proc. Natl. Acad. Sci. USA
100
3826-3831
2003
-
-
-
1
4
-
-
-
-
2
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
4
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740670
Torrents
The anaerobic ribonucleotide r ...
Lactococcus lactis subsp. cremoris
J. Biol. Chem.
276
33488-33494
2001
4
-
1
-
-
-
-
-
-
-
2
-
-
3
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
740895
Cho
-
The substrate reaction mechani ...
Escherichia coli
J. Phys. Chem. B
105
6445-6452
2001
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740665
Andersson
Allosteric regulation of the c ...
Escherichia virus T4
J. Biol. Chem.
275
19443-19448
2000
5
-
-
-
6
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
10
-
5
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740666
Andersson
Cysteines involved in radical ...
Escherichia virus T4
J. Biol. Chem.
275
19449-19455
2000
-
-
1
-
10
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740769
Mulliez
Iron-sulfur interconversions i ...
Escherichia coli
J. Biol. Inorg. Chem.
4
614-620
1999
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740662
Olcott
Localization and characterizat ...
Escherichia virus T4
J. Biol. Chem.
273
24853-24860
1998
-
-
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740660
Ollagnier
Activation of the anaerobic ri ...
Escherichia coli
J. Biol. Chem.
272
24216-24223
1997
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740659
Ollagnier
The anaerobic Escherichia coli ...
Escherichia coli
J. Biol. Chem.
271
9410-9416
1996
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739975
Eliasson
The mechanism of the anaerobic ...
Escherichia coli
Biochem. Biophys. Res. Commun.
214
28-35
1995
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
741351
Mulliez
Formate is the hydrogen donor ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
92
8759-8762
1995
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740656
Eliasson
Allosteric control of the subs ...
Escherichia coli
J. Biol. Chem.
269
26052-26057
1994
-
-
-
-
-
-
2
6
-
-
-
-
-
2
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
6
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740653
Mulliez
An iron-sulfur center and a fr ...
Escherichia coli
J. Biol. Chem.
268
2296-2299
1993
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740651
Eliasson
Characterization of components ...
Escherichia coli
J. Biol. Chem.
267
25541-25547
1992
1
-
-
-
-
-
5
-
-
-
2
-
-
2
-
-
1
-
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
5
-
-
-
-
2
-
-
-
-
1
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
741348
Eliasson
The anaerobic ribonucleoside t ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
87
3314-3318
1990
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-