Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 3.4.21.92 - Endopeptidase Clp

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Gottesman, S.; Clark, W.P.; Maurizi, M.R.
The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate
J. Biol. Chem.
265
7886-7893
1990
Escherichia coli
Manually annotated by BRENDA team
Maurizi, M.R.; Clark, W.P.; Katayama, Y.; Rudikoff, S.; Pumphrey, J.; Bowers, B.; Gottesman, S.
Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli
J. Biol. Chem.
265
12536-12545
1990
Escherichia coli
Manually annotated by BRENDA team
Maurizi, M.R.; Thompson, M.W.; Singh, S.K.; Kim, S.H.
Endopeptidase Clp: ATP-dependent Clp protease from Escherichia coli
Methods Enzymol.
244
314-331
1994
Escherichia coli, Escherichia coli CSH100 (ClpA)
Manually annotated by BRENDA team
Gottesman, S.; Squires, C.; Pichersky, E.; Carrington, M.; Hobbs, M.; Mattick, J.S.; Dalrymple, B.; Kuramitsu, H.; Shiroza, T.; Foster, T.; Clark, W.P.; Ross, B.; Squires, C.L.; Maurizi, M.R.
Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes
Proc. Natl. Acad. Sci. USA
87
3513-3517
1990
Escherichia coli
Manually annotated by BRENDA team
Hwang, B.J.; Woo, K.M.; Goldberg, A.L.; Chung, C.H.
Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits
J. Biol. Chem.
263
8727-8734
1988
Escherichia coli, Escherichia coli RGC125 (lon-)
Manually annotated by BRENDA team
Katayama-Fujimura, Y.; Gottesman, S.; Maurizi, M.R.
A multiple-component, ATP-dependent protease from Escherichia coli
J. Biol. Chem.
262
4477-4485
1987
Escherichia coli
Manually annotated by BRENDA team
Katayama, Y.; Gottesman, S.; Pumphrey, J.; Rudikoff, S.; Clark, W.P.; Mauritzi, M.R.
The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component
J. Biol. Chem.
263
15226-15236
1988
Escherichia coli
Manually annotated by BRENDA team
Damerau, K.; St.John, A.C.
Role of Clp protease subunits in degradation of carbon starvation proteins in Escherichia coli
J. Bacteriol.
175
53-63
1993
Escherichia coli
Manually annotated by BRENDA team
Woo, K.M.; Chung, W.J.; Ha, D.B.; Goldberg, A.L.; Chung, C.H.
Protease Ti from Escherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides
J. Biol. Chem.
264
2088-2091
1989
Escherichia coli, Escherichia coli RGC125 (lon-)
Manually annotated by BRENDA team
Wojtkowiak, D.; Geogopoulos, C.; Zylicz, M.
Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli
J. Biol. Chem.
268
22609-22617
1993
Escherichia coli, Escherichia coli W3110 B178
Manually annotated by BRENDA team
Gottesman, S.; Clark, W.P.; de Crecy-Lagard, V.; Maurizi, M.R.
ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities
J. Biol. Chem.
268
22618-22626
1993
Escherichia coli
Manually annotated by BRENDA team
Maurizi, M.R.
ATP-promoted interaction between Clp A and Clp P in activation of Clp protease from Escherichia coli
Biochem. Soc. Trans.
19
719-723
1991
Escherichia coli
Manually annotated by BRENDA team
Maurizi, M.R.; Clark, W.P.; Kim, S.H.; Gottesman, S.
Clp P represents a unique family of serine proteases
J. Biol. Chem.
265
12546-12552
1990
Escherichia coli
Manually annotated by BRENDA team
Geuskens, V.; Mhammedi-Alaoui, A.; Desmet, L.; Toussaint, A.
Virulence in bacteriophage Mu: a case of trans-dominant proteolysis by the Escherichia coli Clp serine protease
EMBO J.
11
5121-5127
1992
Escherichia coli
Manually annotated by BRENDA team
Shapito, J.A.
A role for the Clp protease in activating Mu-mediated DNA rearrangements
J. Bacteriol.
175
2625-2631
1993
Escherichia coli
Manually annotated by BRENDA team
Peltier, J.B.; Ytterberg, J.; Liberles, D.A.; Roepstorff, P.; van Wijk, K.J.
Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana
J. Biol. Chem.
276
16318-16327
2001
Arabidopsis thaliana
Manually annotated by BRENDA team
Porankiewicz, J.; Wang, J.; Clarke, A.K.
New insights into the ATP-dependent Clp protease: Escherichia coli and beyond
Mol. Microbiol.
32
449-458
1999
Porphyromonas gingivalis, Bordetella pertussis, Chlorobaculum tepidum, Clostridium acetobutylicum, Deinococcus radiodurans, Escherichia coli, Enterococcus faecalis, Helicobacter pylori, Listeria monocytogenes, Myxococcus xanthus, Populus tremula, Pseudomonas aeruginosa, Shewanella putrefaciens, Rhodobacter capsulatus, Salmonella enterica subsp. enterica serovar Typhimurium, Streptococcus pyogenes, Streptomyces coelicolor, Synechococcus sp., Synechococcus sp. (O34125), Synechococcus sp. (P54415), Caulobacter vibrioides (B8GX16), Yersinia enterocolitica (O30612), Yersinia enterocolitica (Q60107), Fritillaria agrestis (O49081), Borreliella burgdorferi (O51698), Aquifex aeolicus (O67357), Treponema pallidum (O84003), Mus musculus (O88696), Oryza sativa (P0C312), Marchantia polymorpha (P12208), Nicotiana tabacum (P12210), Zea mays (P12340), Triticum aestivum (P24064), Epifagus virginiana (P30063), Pinus contorta (P36387), Streptococcus salivarius (P36398), Chlamydia trachomatis (P38002), Pinus thunbergii (P41609), Chlamydomonas moewusii (P42379), Chlamydomonas reinhardtii (P42380), Haemophilus influenzae (P43867), Paracoccus denitrificans (P54414), Synechocystis sp. (P54416), Synechocystis sp. (P74467), Synechocystis sp. (Q59993), Chlorella vulgaris (P56317), Arabidopsis thaliana (P56772), Arabidopsis thaliana (Q787X4), Bacillus subtilis (P80244), Mycobacterium tuberculosis (P9WPC5 and P9WPC3), Homo sapiens (Q16740), Caenorhabditis elegans (Q27539), Cyanophora paradoxa (Q36863), Solanum lycopersicum (Q42886), Lactococcus lactis (Q9ZAB0), Mycobacterium tuberculosis H37Rv (P9WPC5 and P9WPC3)
Manually annotated by BRENDA team
Halperin, T.; Ostersetzer, O.; Adam, Z.
ATP-dependent association between subunits of Clp protease in pea chloroplasts
Planta
213
614-619
2001
Pisum sativum
Manually annotated by BRENDA team
Smith, C.K.; Baker, T.A.; Sauer, R.T.
Lon and Clp family proteases and chaperones share homologous substrate-recognition domains
Proc. Natl. Acad. Sci. USA
96
6678-6682
1999
Escherichia coli
Manually annotated by BRENDA team
Ishikawa, T.; Beuron, F.; Kessel, M.; Wickner, S.; Maurizi, M.R.; Steven, A.C.
Translocation pathway of protein substrates in ClpAP protease
Proc. Natl. Acad. Sci. USA
98
4328-4333
2001
Escherichia coli
Manually annotated by BRENDA team
Barker-Astrom, K.; Schelin, J.; Gustafsson, P.; Clarke, A.K.; Campbell, D.A.
Chlorosis during nitrogen starvation is altered by carbon dioxide and temperature status and is mediated by the ClpP1 protease in Synechococcus elongatus
Arch. Microbiol.
183
66-69
2005
Synechococcus elongatus
Manually annotated by BRENDA team
Choi, K.H.; Licht, S.
Control of peptide product sizes by the energy-dependent protease ClpAP
Biochemistry
44
13921-13931
2005
Escherichia coli
Manually annotated by BRENDA team
Ibrahim, Y.M.; Kerr, A.R.; Silva, N.A.; Mitchell, T.J.
Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae
Infect. Immun.
73
730-740
2005
Streptococcus pneumoniae
Manually annotated by BRENDA team
Kock, H.; Gerth, U.; Hecker, M.
The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis
J. Bacteriol.
186
5856-5864
2004
Bacillus subtilis
Manually annotated by BRENDA team
Gribun, A.; Kimber, M.S.; Ching, R.; Sprangers, R.; Fiebig, K.M.; Houry, W.A.
The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation
J. Biol. Chem.
280
16185-16196
2005
Streptococcus pneumoniae
Manually annotated by BRENDA team
Hinnerwisch, J.; Reid, B.G.; Fenton, W.A.; Horwich, A.L.
Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease
J. Biol. Chem.
280
40838-40844
2005
Escherichia coli
Manually annotated by BRENDA team
Rudella, A.; Friso, G.; Alonso, J.M.; Ecker, J.R.; van Wijk, K.J.
Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis
Plant Cell
18
1704-1721
2006
Arabidopsis thaliana
Manually annotated by BRENDA team
Zheng, B.; Macdonald, T.M.; Sutinen, S.; Hurry, V.; Clarke, A.K.
A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana
Planta
224
1103-1115
2006
Arabidopsis thaliana
Manually annotated by BRENDA team
Nakagawara, E.; Sakuraba, Y.; Yamasato, A.; Tanaka, R.; Tanaka, A.
Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase
Plant J.
49
800-809
2007
Arabidopsis thaliana
Manually annotated by BRENDA team
Cohn, M.T.; Ingmer, H.; Mulholland, F.; J?rgensen, K.; Wells, J.M.; Br?ndsted, L.
Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence
Appl. Environ. Microbiol.
73
7803-7813
2007
Campylobacter jejuni, Campylobacter jejuni NCTC 11168
Manually annotated by BRENDA team
Yu, A.Y.; Houry, W.A.
ClpP: a distinctive family of cylindrical energy-dependent serine proteases
FEBS Lett.
581
3749-3757
2007
Streptococcus pneumoniae, Escherichia coli, Homo sapiens, Mycobacterium tuberculosis, Plasmodium falciparum
Manually annotated by BRENDA team
Michel, A.; Agerer, F.; Hauck, C.R.; Herrmann, M.; Ullrich, J.; Hacker, J.; Ohlsen, K.
Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair
J. Bacteriol.
188
5783-5796
2006
Staphylococcus aureus
Manually annotated by BRENDA team
Stanne, T.M.; Pojidaeva, E.; Andersson, F.I.; Clarke, A.K.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria
J. Biol. Chem.
282
14394-14402
2007
Synechococcus elongatus
Manually annotated by BRENDA team
Farrell, C.M.; Baker, T.A.; Sauer, R.T.
Altered specificity of a AAA+ protease
Mol. Cell
25
161-166
2007
Escherichia coli
Manually annotated by BRENDA team
Prepiak, P.; Dubnau, D.
A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP
Mol. Cell
26
639-647
2007
Bacillus subtilis
Manually annotated by BRENDA team
Zellmeier, S.; Schumann, W.; Wiegert, T.
Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response
Mol. Microbiol.
61
1569-1582
2006
Bacillus subtilis
Manually annotated by BRENDA team
Frees, D.; Savijoki, K.; Varmanen, P.; Ingmer, H.
Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria
Mol. Microbiol.
63
1285-1295
2007
Bacillus subtilis
Manually annotated by BRENDA team
Sjoegren, L.L.; Stanne, T.M.; Zheng, B.; Sutinen, S.; Clarke, A.K.
Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis
Plant Cell
18
2635-2649
2006
Arabidopsis thaliana
Manually annotated by BRENDA team
Jennings, L.D.; Bohon, J.; Chance, M.R.; Licht, S.
The ClpP N-terminus coordinates substrate access with protease active site reactivity
Biochemistry
47
11031-11040
2008
Escherichia coli
Manually annotated by BRENDA team
Jana, B.; Panja, S.; Saha, S.; Basu, T.
Mechanism of protonophores-mediated induction of heat-shock response in Escherichia coli
BMC Microbiol.
9
20
2009
Escherichia coli
Manually annotated by BRENDA team
Guillon, B.; Bulteau, A.L.; Wattenhofer-Donze, M.; Schmucker, S.; Friguet, B.; Puccio, H.; Drapier, J.C.; Bouton, C.
Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins
FEBS J.
276
1036-1047
2009
Mus musculus (O88696)
Manually annotated by BRENDA team
Boettcher, T.; Sieber, S.A.
Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus
J. Am. Chem. Soc.
130
14400-14401
2008
Staphylococcus aureus
Manually annotated by BRENDA team
de Bruijn, I.; Raaijmakers, J.M.
Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease
J. Bacteriol.
191
1910-1923
2009
Pseudomonas fluorescens (B7TX39), Pseudomonas fluorescens, Pseudomonas fluorescens SS101 (B7TX39), Pseudomonas fluorescens SS101
Manually annotated by BRENDA team
Andersson, F.I.; Tryggvesson, A.; Sharon, M.; Diemand, A.V.; Classen, M.; Best, C.; Schmidt, R.; Schelin, J.; Stanne, T.M.; Bukau, B.; Robinson, C.V.; Witt, S.; Mogk, A.; Clarke, A.K.
Structure and function of a novel type of ATP-dependent CLP protease
J. Biol. Chem.
284
13519-13532
2009
Synechococcus elongatus
Manually annotated by BRENDA team
Kim, D.Y.; Kim, K.K.
The structural basis for the activation and peptide recognition of bacterial ClpP
J. Mol. Biol.
379
760-771
2008
Helicobacter pylori
Manually annotated by BRENDA team
Cao, J.; Chen, T.; Li, D.; Wong, C.K.; Chen, D.; Xu, W.; Zhang, X.; Lam, C.W.; Yin, Y.
Mucosal immunization with purified ClpP could elicit protective efficacy against pneumococcal pneumonia and sepsis in mice
Microbes Infect.
10
1536-1542
2008
Streptococcus pneumoniae TIGR4
Manually annotated by BRENDA team
Hahn, J.; Kramer, N.; Briley, K.; Dubnau, D.
McsA and B mediate the delocalization of competence proteins from the cell poles of Bacillus subtilis
Mol. Microbiol.
72
202-215
2009
Bacillus subtilis
Manually annotated by BRENDA team
Hansen, J.; Corydon, T.J.; Palmfeldt, J.; Duerr, A.; Fontaine, B.; Nielsen, M.N.; Christensen, J.H.; Gregersen, N.; Bross, P.
Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13)
Neuroscience
153
474-482
2008
Homo sapiens (Q16740)
Manually annotated by BRENDA team
Cao, J.; Gong, Y.; Li, D.; Yin, N.; Chen, T.; Xu, W.; Zhang, X.; Yin, Y.
CD4(+) T lymphocytes mediated protection against invasive pneumococcal infection induced by mucosal immunization with ClpP and CbpA
Vaccine
27
2838-2844
2009
Streptococcus pneumoniae TIGR4 (P63787)
Manually annotated by BRENDA team
Gumber, S.; Taylor, D.L.; Whittington, R.J.
Evaluation of the immunogenicity of recombinant stress-associated proteins during Mycobacterium avium subsp. paratuberculosis infection: Implications for pathogenesis and diagnosis
Vet. Microbiol.
137
290-296
2009
Mycobacterium avium subsp. paratuberculosis (Q73XM8)
Manually annotated by BRENDA team
Lin, W.; Chan, M.; Sim, T.S.
Atypical caseinolytic protease homolog from Plasmodium falciparum possesses unusual substrate preference and a functional nuclear localization signal
Parasitol. Res.
105
1715-1722
2009
Plasmodium falciparum (O97252), Plasmodium falciparum
Manually annotated by BRENDA team
Geiger, S.; Boettcher, T.; Sieber, S.; Cramer, P.
A conformational switch underlies ClpP protease function
Angew. Chem. Int. Ed. Engl.
50
5749-5752
2011
Staphylococcus aureus
Manually annotated by BRENDA team
Wu, H.; Ji, Y.; Du, J.; Kong, D.; Liang, H.; Ling, H.Q.
ClpC1, an ATP-dependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves
Ann. Bot.
105
823-833
2010
Arabidopsis thaliana
Manually annotated by BRENDA team
Maillard, R.A.; Chistol, G.; Sen, M.; Righini, M.; Tan, J.; Kaiser, C.M.; Hodges, C.; Martin, A.; Bustamante, C.
ClpX(P) generates mechanical force to unfold and translocate its protein substrates
Cell
145
459-469
2011
Escherichia coli
Manually annotated by BRENDA team
Religa, T.L.; Ruschak, A.M.; Rosenzweig, R.; Kay, L.E.
Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease
J. Am. Chem. Soc.
133
9063-9068
2011
Escherichia coli
Manually annotated by BRENDA team
Camberg, J.L.; Hoskins, J.R.; Wickner, S.
The interplay of ClpXP with the cell division machinery in Escherichia coli
J. Bacteriol.
193
1911-1918
2011
Escherichia coli
Manually annotated by BRENDA team
Ollinger, J.; OMalley, T.; Kesicki, E.A.; Odingo, J.; Parish, T.
Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target
J. Bacteriol.
194
663-668
2012
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Effantin, G.; Maurizi, M.R.; Steven, A.C.
Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase
J. Biol. Chem.
285
14834-14840
2010
Escherichia coli
Manually annotated by BRENDA team
Lee, M.E.; Baker, T.A.; Sauer, R.T.
Control of substrate gating and translocation into ClpP by channel residues and ClpX binding
J. Mol. Biol.
399
707-718
2010
Escherichia coli
Manually annotated by BRENDA team
El Bakkouri, M.; Pow, A.; Mulichak, A.; Cheung, K.L.; Artz, J.D.; Amani, M.; Fell, S.; de Koning-Ward, T.F.; Goodman, C.D.; McFadden, G.I.; Ortega, J.; Hui, R.; Houry, W.A.
The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum
J. Mol. Biol.
404
456-477
2010
Plasmodium falciparum (O97252), Plasmodium falciparum
Manually annotated by BRENDA team
Nager, A.R.; Baker, T.A.; Sauer, R.T.
Stepwise unfolding of a beta-barrel protein by the AAA+ ClpXP protease
J. Mol. Biol.
413
4-16
2011
Escherichia coli
Manually annotated by BRENDA team
Kajfasz, J.K.; Abranches, J.; Lemos, J.A.
Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans
Microbiology
157
2880-2890
2011
Streptococcus mutans
Manually annotated by BRENDA team
Kitagawa, R.; Takaya, A.; Yamamoto, T.
Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic Escherichia coli
Microbiology
157
3094-3103
2011
Escherichia coli
Manually annotated by BRENDA team
Cohn, M.T.; Kjelgaard, P.; Frees, D.; Penades, J.R.; Ingmer, H.
Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus
Microbiology
157
677-684
2011
Staphylococcus aureus
Manually annotated by BRENDA team
Lee, B.; Kim, M.; Song, H.
Structural insights into the conformational diversity of ClpP from Bacillus subtilis
Mol. Cells
32
589-595
2011
Bacillus subtilis (P80244)
Manually annotated by BRENDA team
Martinez-Noel, G.; Curatti, L.; Hernandez, J.A.; Rubio, L.M.
NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii
Mol. Microbiol.
79
1182-1193
2011
Azotobacter vinelandii
Manually annotated by BRENDA team
Li, Y.; Yamazaki, A.; Zou, L.; Biddle, E.; Zeng, Q.; Wang, Y.; Lin, H.; Wang, Q.; Yang, C.H.
ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence
Mol. Plant Microbe Interact.
23
871-878
2010
Dickeya dadantii
Manually annotated by BRENDA team
Sjoegren, L.L.; Clarke, A.K.
Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins
Plant Cell
23
322-332
2011
Arabidopsis thaliana
Manually annotated by BRENDA team
Kimber, M.S.; Yu, A.Y.; Borg, M.; Leung, E.; Chan, H.S.; Houry, W.A.
Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations
Structure
18
798-808
2010
Escherichia coli
Manually annotated by BRENDA team
Tryggvesson, A.; Stahlberg, F.M.; Mogk, A.; Zeth, K.; Clarke, A.K.
Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease
Biochem. J.
446
311-320
2012
Synechococcus elongatus (Q9L4P3), Synechococcus elongatus, Synechococcus elongatus PCC 7942 (Q9L4P3)
Manually annotated by BRENDA team
Sen, M.; Maillard, R.; Nyquist, K.; Rodriguez-Aliaga, P.; Presse, S.; Martin, A.; Bustamante, C.
The ClpXP protease unfolds substrates using a constant rate of pulling but different gears
Cell
155
X636-X646
2013
Escherichia coli
-
Manually annotated by BRENDA team
Cordova, J.C.; Olivares, A.O.; Shin, Y.; Stinson, B.M.; Calmat, S.; Schmitz, K.R.; Aubin-Tam, M.E.; Baker, T.A.; Lang, M.J.; Sauer, R.T.
Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine
Cell
158
647-658
2014
Escherichia coli (P0A6H1)
Manually annotated by BRENDA team
Bonnet, M.; Stegmann, M.; Maglica, Z.; Stiegeler, E.; Weber-Ban, E.; Hennecke, H.; Mesa, S.
FixK2, a key regulator in Bradyrhizobium japonicum, is a substrate for the protease ClpAP in vitro
FEBS Lett.
587
88-93
2013
Bradyrhizobium japonicum (Q89KG1), Bradyrhizobium japonicum
Manually annotated by BRENDA team
Li, D.; Zhang, C.; Lu, N.; Mu, L.; He, Y.; Xu, L.; Yang, J.; Fan, Y.; Kang, Y.; Yang, C.
Cloning and characterization of Clp protease proteolytic subunit 2 and its implication in clinical diagnosis of tuberculosis
Int. J. Clin. Exp. Pathol.
7
5674-5682
2014
Mycobacterium tuberculosis (P9WPC3), Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv (P9WPC3)
Manually annotated by BRENDA team
Gersch, M.; Kolb, R.; Alte, F.; Groll, M.; Sieber, S.A.
Disruption of oligomerization and dehydroalanine formation as mechanisms for ClpP protease inhibition
J. Am. Chem. Soc.
136
1360-1366
2014
Staphylococcus aureus
Manually annotated by BRENDA team
Wahl, A.; Servais, F.; Drucbert, A.S.; Foulon, C.; Fontaine, L.; Hols, P.
Control of natural transformation in salivarius Streptococci through specific degradation of sigmaX by the MecA-ClpCP protease complex
J. Bacteriol.
196
2807-2816
2014
Streptococcus thermophilus (Q5M6G1), Streptococcus thermophilus, Streptococcus thermophilus ATCC BAA-250 (Q5M6G1)
Manually annotated by BRENDA team
Sato, Y.; Takaya, A.; Mouslim, C.; Hughes, K.T.; Yamamoto, T.
FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-dependent protease, ClpXP
J. Biol. Chem.
289
33001-33011
2014
Salmonella enterica (Q8ZRC0), Salmonella enterica ATCC 700720 (Q8ZRC0)
Manually annotated by BRENDA team
Brzozowska, I.; Zielenkiewicz, U.
The ClpXP protease is responsible for the degradation of the Epsilon antidote to the Zeta toxin of the streptococcal pSM19035 plasmid
J. Biol. Chem.
289
7514-7523
2014
Bacillus subtilis
Manually annotated by BRENDA team
Bhat, N.H.; Vass, R.H.; Stoddard, P.R.; Shin, D.K.; Chien, P.
Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development
Mol. Microbiol.
88
1083-1092
2013
Caulobacter vibrioides
Manually annotated by BRENDA team
Gersch, M.; Famulla, K.; Dahmen, M.; Goebl, C.; Malik, I.; Richter, K.; Korotkov, V.S.; Sass, P.; Ruebsamen-Schaeff, H.; Madl, T.; Broetz-Oesterhelt, H.; Sieber, S.A.
AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control
Nat. Commun.
6
6320
2015
Staphylococcus aureus (Q2G036), Staphylococcus aureus NCTC 8325 (Q2G036)
Manually annotated by BRENDA team
Derrien, B.; Majeran, W.; Effantin, G.; Ebenezer, J.; Friso, G.; van Wijk, K.J.; Steven, A.C.; Maurizi, M.R.; Vallon, O.
The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features
Plant Mol. Biol.
80
189-202
2012
Chlamydomonas reinhardtii
Manually annotated by BRENDA team
Xie, F.; Zhang, Y.; Li, G.; Zhou, L.; Liu, S.; Wang, C.
The ClpP protease is required for the stress tolerance and biofilm formation in Actinobacillus pleuropneumoniae
PLoS ONE
8
e53600
2013
Actinobacillus pleuropneumoniae
Manually annotated by BRENDA team
Personne, Y.; Brown, A.; Schuessler, D.; Parish, T.
Mycobacterium tuberculosis ClpP proteases are co-transcribed but exhibit different substrate specificities
PLoS ONE
8
e60228
2013
Mycobacterium tuberculosis (P9WPC3), Mycobacterium tuberculosis (P9WPC5), Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv (P9WPC3), Mycobacterium tuberculosis H37Rv (P9WPC5)
Manually annotated by BRENDA team
Lee, J.O.; Kim, J.Y.; Rhee, D.K.; Pyo, S.
Streptococcus pneumoniae ClpP protease induces apoptosis via caspase-independent pathway in human neuroblastoma cells: cytoplasmic relocalization of p53
Toxicon
70
142-152
2013
Streptococcus pneumoniae
Manually annotated by BRENDA team
Alexopoulos, J.A.; Guarne, A.; Ortega, J.
ClpP: a structurally dynamic protease regulated by AAA+ proteins
J. Struct. Biol.
179
202-210
2012
Escherichia coli (P0A6G7), Bacillus subtilis (P80244)
Manually annotated by BRENDA team
Amor, A.J.; Schmitz, K.R.; Sello, J.K.; Baker, T.A.; Sauer, R.T.
Highly dynamic interactions maintain kinetic stability of the ClpXP protease during the ATP-fueled mechanical cycle
ACS Chem. Biol.
11
1552-1560
2016
Escherichia coli (P0A6G7)
Manually annotated by BRENDA team
Ni, T.; Ye, F.; Liu, X.; Zhang, J.; Liu, H.; Li, J.; Zhang, Y.; Sun, Y.; Wang, M.; Luo, C.; Jiang, H.; Lan, L.; Gan, J.; Zhang, A.; Zhou, H.; Yang, C.G.
Characterization of gain-of-function mutant provides new insights into ClpP structure
ACS Chem. Biol.
11
1964-1972
2016
Staphylococcus aureus (P63786), Staphylococcus aureus, Staphylococcus aureus MW2 (P63786)
Manually annotated by BRENDA team
Choules, M.P.; Wolf, N.M.; Lee, H.; Anderson, J.R.; Grzelak, E.M.; Wang, Y.; Ma, R.; Gao, W.; McAlpine, J.B.; Jin, Y.Y.; Cheng, J.; Lee, H.; Suh, J.W.; Duc, N.M.; Paik, S.; Choe, J.H.; Jo, E.K.; Chang, C.L.; Lee, J.S.; Jaki, B.U.; Pauli, G.F.; Franzblau, S.G.; Cho, S.
Rufomycin targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus
Antimicrob. Agents Chemother.
63
e02204
2019
Mycobacterium tuberculosis (P9WPC5 and P9WPC3), Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv (P9WPC5 and P9WPC3)
Manually annotated by BRENDA team
Aguado, A.; Fernandez-Higuero, J.A.; Cabrera, Y.; Moro, F.; Muga, A.
ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins
Biochem. J.
466
561-570
2015
Escherichia coli, Escherichia coli BB4561
Manually annotated by BRENDA team
Zhang, Y.; Maurizi, M.R.
Mitochondrial ClpP activity is required for cisplatin resistance in human cells
Biochim. Biophys. Acta
1862
252-264
2016
Homo sapiens (Q16740)
Manually annotated by BRENDA team
Marsee, J.D.; Ridings, A.; Yu, T.; Miller, J.M.
Mycobacterium tuberculosis ClpC1 N-terminal domain is dispensable for adaptor protein-dependent allosteric regulation
Int. J. Mol. Sci.
19
3651
2018
Mycobacterium tuberculosis (P9WPC9), Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv (P9WPC9)
Manually annotated by BRENDA team
Weinhaeupl, K.; Brennich, M.; Kazmaier, U.; Lelievre, J.; Ballell, L.; Goldberg, A.; Schanda, P.; Fraga, H.
The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis
J. Biol. Chem.
293
8379-8393
2018
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Trentini, D.B.; Suskiewicz, M.J.; Heuck, A.; Kurzbauer, R.; Deszcz, L.; Mechtler, K.; Clausen, T.
Arginine phosphorylation marks proteins for degradation by a Clp protease
Nature
539
48-53
2016
Bacillus subtilis (P80244), Bacillus subtilis, Bacillus subtilis 168 (P80244)
Manually annotated by BRENDA team
Tapken, W.; Kim, J.; Nishimura, K.; van Wijk, K.; Pilon, M.
The Clp protease system is required for copper ion-dependent turnover of the PAA2/HMA8 copper transporter in chloroplasts
New Phytol.
205
511-517
2015
Arabidopsis thaliana, Arabidopsis thaliana Col-0
Manually annotated by BRENDA team
Leodolter, J.; Warweg, J.; Weber-Ban, E.
The Mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its ATPase partners ClpX and ClpC1
PLoS ONE
10
e0125345
2015
Mycobacterium tuberculosis (P9WPC5 and P9WPC3), Mycobacterium tuberculosis
Manually annotated by BRENDA team
Shi, X.; Wu, T.; M Cole, C.; K Devaraj, N.; Joseph, S.
Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system
Sci. Rep.
8
3488
2018
Escherichia coli (P0A6G7), Escherichia coli
Manually annotated by BRENDA team
Sivertsson, E.M.; Jackson, S.E.; Itzhaki, L.S.
The AAA+ protease ClpXP can easily degrade a 31 and a 52-knotted protein
Sci. Rep.
9
2421
2019
Escherichia coli
Manually annotated by BRENDA team