Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,3-dinitrobenzene + NADH + H+
? + NAD+
-
10.6% activity compared to FMN
-
-
?
1,4-benzoquinone + NADH + H+
1,4-benzoquinol + NAD+
-
18.6% activity compared to FMN
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
3-nitrophenol + NADH + H+
? + NAD+
-
8.95% activity compared to FMN
-
-
?
4-nitroacetophenone + NADH + H+
? + NAD+
-
17.9% activity compared to FMN
-
-
?
4-nitroaniline + NADH + H+
? + NAD+
-
4.91% activity compared to FMN
-
-
?
4-nitrobenzoate + NADH + H+
? + NAD+
-
21.2% activity compared to FMN
-
-
?
4-nitrophenol + NADH + H+
? + NAD+
-
8.07% activity compared to FMN
-
-
?
4-nitrotoluene + NADH + H+
? + NAD+
-
8.83% activity compared to FMN
-
-
?
FAD + NAD(P)H
FADH2 + NAD(P)+
FAD + NADH + H+
FADH2 + NAD+
-
58.1% activity compared to FMN
-
-
?
FAD + NADPH
FADH2 + NADP+
FAD + NADPH + H+
FADH2 + NADP+
FAD + NADPH + H+
reduced FAD + NADP+
FMN + NAD(P)H
FMNH2 + NAD(P)+
FMN + NADH
FMNH2 + NADP+
-
preference for NADPH over NADH, rate of reduction is 80 times faster with NADPH
-
-
?
FMN + NADH + H+
FMNH2 + NAD+
FMN + NADPH
FMNH2 + NADP+
FMN + NADPH
FMNH2 + NADP+ + H+
-
-
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
FMN + NADPH + H+
reduced FMN + NADP+
FMNH2 + NADP+
FMN + NADPH + H+
galactoflavin + NADPH
reduced galactoflavin + NADP+
lumiflavin + NADH + H+
reduced lumiflavin + NAD+
-
14.1% activity compared to FMN
-
-
?
lumiflavin + NADPH + H+
reduced lumiflavin + NADP+
menadione + NADH + H+
menadiol + NAD+
-
19.0% activity compared to FMN
-
-
?
methyl-4-nitrobenzoate + NADH + H+
? + NAD+
-
10.7% activity compared to FMN
-
-
?
methylene blue + NADH + H+
reduced methylene blue + NAD+
-
29.0% activity compared to FMN
-
-
?
NADH + H+ + oxidized 2,6-dichlorophenolindophenol
NAD+ + reduced 2,6-dichlorophenolindophenol
nitrofurantoin + NADH + H+
? + NAD+
-
10.1% activity compared to FMN
-
-
?
nitrofurazone + NADH + H+
reduced nitrofurazone + NAD+
-
13.5% activity compared to FMN
-
-
?
nitrofurazone + NADPH + 4 H+
5-(hydroxyamino)furan-2-carbaldehyde semicarbazone + NADP+ + H2O
oxidized 2,6-dichlorophenolindophenol + NADPH + H+
reduced 2,6-dichlorophenolindophenol + NADP+
-
-
-
-
?
oxidized methylene blue + NADPH + H+
reduced methylene blue + NADP+
-
-
-
-
?
oxidized riboflavin + NADPH + H+
reduced riboflavin + NADP+
reduced 2-thioFMN + NAD+
?
-
-
-
-
r
riboflavin + NAD(P)H
reduced riboflavin + NAD(P)+
-
-
-
-
r
riboflavin + NAD(P)H
reduced riboflavin + NADP+
-
redox potential of the irreversible reductive half-reaction
-
-
?
riboflavin + NADH + H+
reduced riboflavin + NAD+
-
29.0% activity compared to FMN
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
riboflavin + NADPH + H+
reduced riboflavin + NADP+
riboflavin-5-phosphate + NADH + H+
reduced FMN + NAD+
additional information
?
-
2 ferricyanide + NADH

2 ferrocyanide + NAD+ + H+
-
15.4% activity compared to FMN
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
-
15.4% activity compared to FMN
-
-
?
2 ferricytochrome c + NADH

2 ferrocytochrome c + NAD+ + H+
-
8.48% activity compared to FMN
-
-
?
2 ferricytochrome c + NADH
2 ferrocytochrome c + NAD+ + H+
-
8.48% activity compared to FMN
-
-
?
FAD + NAD(P)H

FADH2 + NAD(P)+
-
-
-
-
r
FAD + NAD(P)H
FADH2 + NAD(P)+
-
-
-
-
r
FAD + NADPH

FADH2 + NADP+
-
-
-
-
?
FAD + NADPH
FADH2 + NADP+
-
-
-
-
r
FAD + NADPH
FADH2 + NADP+
-
-
-
-
r
FAD + NADPH
FADH2 + NADP+
-
-
-
-
?
FAD + NADPH
FADH2 + NADP+
-
-
-
-
?
FAD + NADPH
FADH2 + NADP+
-
-
-
-
?
FAD + NADPH
FADH2 + NADP+
-
-
-
-
?
FAD + NADPH + H+

FADH2 + NADP+
-
-
-
?
FAD + NADPH + H+
FADH2 + NADP+
-
specific activity for the reduction of oxidized riboflavin, FMN and FAD is similar
-
-
?
FAD + NADPH + H+

reduced FAD + NADP+
-
-
-
-
?
FAD + NADPH + H+
reduced FAD + NADP+
-
-
-
-
?
FMN + NAD(P)H

FMNH2 + NAD(P)+
-
-
-
-
r
FMN + NAD(P)H
FMNH2 + NAD(P)+
-
-
-
-
r
FMN + NAD(P)H
FMNH2 + NAD(P)+
-
-
-
-
r
FMN + NADH

FMNH2 + NAD+
-
-
-
-
?
FMN + NADH
FMNH2 + NAD+
-
-
-
-
?
FMN + NADH + H+

FMNH2 + NAD+
-
-
-
-
?
FMN + NADH + H+
FMNH2 + NAD+
-
-
-
-
?
FMN + NADH + H+
FMNH2 + NAD+
-
-
-
-
?
FMN + NADPH

FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
preference for NADPH over NADH, rate of reduction is 80 times faster with NADPH
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
r
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
r
FMN + NADPH
FMNH2 + NADP+
-
reaction may be coupled with luciferase for bioluminescence
-
-
?
FMN + NADPH
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH + H+

FMNH2 + NADP+
-
203% activity compared to NAD+
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
203% activity compared to NAD+
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
specific activity for the reduction of oxidized riboflavin, FMN and FAD is similar
-
-
?
FMN + NADPH + H+
FMNH2 + NADP+
-
-
-
-
?
FMN + NADPH + H+

reduced FMN + NADP+
-
-
-
-
?
FMN + NADPH + H+
reduced FMN + NADP+
-
-
-
-
?
FMNH2 + NADP+

FMN + NADPH + H+
-
-
-
r
FMNH2 + NADP+
FMN + NADPH + H+
-
-
-
r
galactoflavin + NADPH

reduced galactoflavin + NADP+
-
-
-
-
?
galactoflavin + NADPH
reduced galactoflavin + NADP+
-
-
-
-
?
lumiflavin + NADPH + H+

reduced lumiflavin + NADP+
-
-
-
-
?
lumiflavin + NADPH + H+
reduced lumiflavin + NADP+
-
-
-
-
?
NADH + H+ + oxidized 2,6-dichlorophenolindophenol

NAD+ + reduced 2,6-dichlorophenolindophenol
-
23.0% activity compared to FMN
-
-
?
NADH + H+ + oxidized 2,6-dichlorophenolindophenol
NAD+ + reduced 2,6-dichlorophenolindophenol
-
23.0% activity compared to FMN
-
-
?
nitrofurazone + NADPH + 4 H+

5-(hydroxyamino)furan-2-carbaldehyde semicarbazone + NADP+ + H2O
-
-
-
-
?
nitrofurazone + NADPH + 4 H+
5-(hydroxyamino)furan-2-carbaldehyde semicarbazone + NADP+ + H2O
-
-
-
-
?
oxidized riboflavin + NADPH + H+

reduced riboflavin + NADP+
-
-
-
?
oxidized riboflavin + NADPH + H+
reduced riboflavin + NADP+
-
specific activity for the reduction of oxidized riboflavin, FMN and FAD is similar
-
-
?
riboflavin + NADPH

reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
-
-
-
r
riboflavin + NADPH
reduced riboflavin + NADP+
-
i.e. FMN
i.e. FMNH2
-
?
riboflavin + NADPH
reduced riboflavin + NADP+
-
redox potential and equilibria in the reversible reductive half-reaction
-
-
?
riboflavin + NADPH + H+

reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH + H+
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin + NADPH + H+
reduced riboflavin + NADP+
-
-
-
-
?
riboflavin-5-phosphate + NADH + H+

reduced FMN + NAD+
-
-
-
-
r
riboflavin-5-phosphate + NADH + H+
reduced FMN + NAD+
-
-
-
-
r
additional information

?
-
-
enzyme additionally has azoreductase activity cleaving the -N=N- bond in azo dyes
-
-
?
additional information
?
-
-
the enzyme reduces both nitrofurazone and FMN effectively, it is bifunctional as flavin reductase and nitroreductase. Two different FMN molecules are involved in the FMN reduction process: FMN tightly associated to the enzyme as prosthetic group and FMN as a substrate. The enzyme is also active with FAD, riboflavin, and lumiflavin, the two latter give the highest activity
-
-
?
additional information
?
-
-
the enzyme reduces both nitrofurazone and FMN effectively, it is bifunctional as flavin reductase and nitroreductase. Two different FMN molecules are involved in the FMN reduction process: FMN tightly associated to the enzyme as prosthetic group and FMN as a substrate. The enzyme is also active with FAD, riboflavin, and lumiflavin, the two latter give the highest activity
-
-
?
additional information
?
-
-
bifunctional enzyme flavin reductase (NADPH)/biliverdin-IXbeta reductase
-
-
?
additional information
?
-
-
the enzyme is also active with FMN and NADH, cf. EC 1.5.1.36
-
-
?
additional information
?
-
-
the enzyme is also active with FMN and NADH, cf. EC 1.5.1.36
-
-
?
additional information
?
-
-
prefers NADPH over NADH
-
-
?
additional information
?
-
-
prefers NADPH over NADH
-
-
?
additional information
?
-
-
no catalytic activity is detected with NADH
-
-
?
additional information
?
-
FR is a relevant source of hydrogen peroxide but superoxide radical anions are a minor by-product of the reaction
-
-
?
additional information
?
-
-
FR is a relevant source of hydrogen peroxide but superoxide radical anions are a minor by-product of the reaction
-
-
?
additional information
?
-
FR is a relevant source of hydrogen peroxide but superoxide radical anions are a minor by-product of the reaction
-
-
?
additional information
?
-
-
enzyme transfers reduced riboflavin 5'-phosphate to luciferase by direct channeling in vitro and in vivo, formation of donor-acceptor enzyme complex
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.007
2-thioFMN
-
enzyme reconstituted from apoenzyme and 2-thioFMN
0.053
oxidized riboflavin
pH 7.5, 25°C
additional information
additional information
-
0.0036
FAD

-
-
0.000016
FMN

-
25°C, single-enzyme assay
0.00013
FMN
-
25°C, enzyme in complex with monooxygenase SsuD, presence of octanesulfonate
0.00013
FMN
-
presence of 1.05 mM O2
0.0009
FMN
-
coupled oxidoreductase-luciferase assay, kcat/Km = 73/(M*min), in 100 mM Na+/K+ phosphate buffer with 100 mM NaCl, pH 7.0, 1 microM Fre oxidoreductase, 10 microM decanal, 10 microM NADPH, 5 microM luciferase
0.002
FMN
-
mutant enzyme E99K, in 50 mM phosphate buffer, at pH 7.0, at 23°C
0.0047
FMN
-
pH 7.0, 23°C, recombinant enzyme
0.0058
FMN
-
flavin reductase P R203A
0.0069
FMN
-
native flavin reductase P
0.008
FMN
-
native enzyme, at 23°C in 50 mM phosphate buffer, pH 7.0
0.021
FMN
-
recombinant fusion protein, pH 7.0, 23°C
0.05
FMN
-
pH and temperature not specified in the publication
0.072
FMN
-
enzyme fused to luciferase, at 23°C in 50 mM phosphate buffer, pH 7.0
14.2
FMN
-
in the presence of NADPH
0.208
NADH

-
-
0.5
NADH
-
in the presence of FMN
0.65
NADH
-
pH 7.5, 37°C
0.000019
NADPH

-
presence of 1.05 mM O2
0.00007
NADPH
-
mutant enzyme E99K, in 50 mM phosphate buffer, at pH 7.0, at 23°C
0.00085
NADPH
-
nitrofurazone as electron acceptor
0.002
NADPH
-
pH and temperature not specified in the publication
0.003
NADPH
-
enzyme reconstituted from apoenzyme and 2-thioFMN
0.0035
NADPH
-
FMN as electron accceptor
0.0039
NADPH
-
pH 7.0, 23°C, recombinant enzyme, with FMN
0.0054
NADPH
-
25°C, single-enzyme assay
0.009
NADPH
-
wild type enzyme, in 20 mM N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid buffer, pH 7.0, at 22°C
0.01
NADPH
-
mutant enzyme R225A, in 20 mM N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid buffer, pH 7.0, at 22°C
0.0109
NADPH
-
with FMN, pH 7.5, 30°C, recombinant enzyme
0.016
NADPH
-
mutant enzyme R133A, in 20 mM N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid buffer, pH 7.0, at 22°C
0.0184
NADPH
-
with FAD, pH 7.5, 30°C, recombinant enzyme
0.02
NADPH
-
native enzyme, at 23°C in 50 mM phosphate buffer, pH 7.0
0.021
NADPH
-
native flavin reductase P
0.032
NADPH
-
FAD as electron acceptor
0.034
NADPH
-
mutant enzyme N134A, in 20 mM N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid buffer, pH 7.0, at 22°C
0.048
NADPH
-
recombinant fusion protein, pH 7.0, 23°C
0.05
NADPH
-
at a saturating concentration of FMN
0.31
NADPH
-
enzyme fused to luciferase, at 23°C in 50 mM phosphate buffer, pH 7.0
0.55
NADPH
-
pH 7.5, 37°C
0.71
NADPH
-
flavin reductase P R203A
0.0013
riboflavin

-
coupled oxidoreductase-luciferase assay, kcat/Km = 1257/(M*min), in 100 mM Na+/K+ phosphate buffer with 100 mM NaCl, pH 7.0, 1 microM Fre oxidoreductase, 10 microM decanal, 10 microM NADPH, 5 microM luciferase, riboflavin is favoured by Fre oxidoreductase but a poor substrate for bacterial luciferase
additional information
additional information

-
substrate and cofactor binding, reaction kinetics
-
additional information
additional information
-
substrate and cofactor binding, reaction kinetics
-
additional information
additional information
-
Km-value of both NADPH and FMN gradually decreases at increasing concentrations of oxygen, with 0.000104 and 0.000019 mM as the upper limits for Km of FMN and NADPH, resp.
-
additional information
additional information
-
enzyme kinetic analysis, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Yubisui, T.; Matsuki, T.; Takeshita, M.; Yoneyama, Y.
Characterization of the purified NADPH-flavin reductase of human erythrocytes
J. Biochem.
85
719-728
1979
Homo sapiens
brenda
Tang, C.K.; Jeffers, C.E.; Nichols, J.C.; Tu, S.C.
Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I
Arch. Biochem. Biophys.
392
110-116
2001
Aliivibrio fischeri
brenda
Lo, H.S.; Reeves, R.E.
Purification and properties of NADPH: flavin oxidoreductase from Entamoeba histolytica
Mol. Biochem. Parasitol.
2
23-30
1980
Entamoeba histolytica, Entamoeba histolytica NIH:200
brenda
Lei, B.; Liu, M.; Huang, S.; Tu, S.C.
Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme
J. Bacteriol.
176
3552-3558
1994
Vibrio harveyi, Vibrio harveyi MAV / ATCC 33843
brenda
Mack, C.P.; Hultquist, D.E.; Shlafer, M.
Myocardial flavin reductase and riboflavin: a potential role in decreasing reoxygenation injury
Biochem. Biophys. Res. Commun.
212
35-40
1995
Oryctolagus cuniculus
brenda
Tanner, J.J.; Lei, B.; Tu, S.C.; Krause, K.L.
Flavin reductase P: structure of a dimeric enzyme that reduces flavin
Biochemistry
35
13531-13539
1996
Vibrio harveyi
brenda
Liu, M.; Lei, B.; Ding, Q.; Lee, J.C.; Tu, S.C.
Vibrio harveyi NADPH:FMN oxidoreductase: preparation and characterization of the apoenzyme and monomer-dimer equilibrium
Arch. Biochem. Biophys.
337
89-95
1997
Vibrio harveyi
brenda
Parry, R.J.; Li, W.
An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning analysis, and overexpression
J. Biol. Chem.
272
23303-23311
1997
Streptomyces viridifaciens
brenda
Zenno, S.; Kobori, T.; Tanokura, M.; Saigo, K.
Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable of interacting with the bacterial luciferase
Biosci. Biotechnol. Biochem.
62
1978-1987
1998
Bacillus subtilis, Bacillus subtilis ISW 1214.
brenda
Wang, H.; Lei, B.; Tu, S.C.
Vibrio harveyi NADPH-FMN oxidoreductase Arg203 as a critical residue for NADPH recognition and binding
Biochemistry
39
7813-7819
2000
Vibrio harveyi
brenda
Matsubara, T.; Ohshiro, T.; Nishina, Y.; Izumi, Y.
Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1
Appl. Environ. Microbiol.
67
1179-1184
2001
Rhodococcus erythropolis, Rhodococcus erythropolis D1
brenda
Gao, B.; Ellis, H.R.
Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme
Biochem. Biophys. Res. Commun.
331
1137-1145
2005
Escherichia coli
brenda
Lei, B.; Wang, H.; Yu, Y.; Tu, S.C.
Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase
Biochemistry
44
261-267
2005
Aliivibrio fischeri, Vibrio harveyi
brenda
Kwasnicka, D.A.; Krakowiak, A.; Thacker, C.; Brenner, C.; Vincent, S.R.
Coordinate expression of NADPH-dependent flavin reductase, Fre-1, and Hint-related 7meGMP-directed hydrolase, DCS-1
J. Biol. Chem.
278
39051-39058
2003
Caenorhabditis elegans, Homo sapiens (Q9UHB4), Homo sapiens
brenda
Low, J.C.; Tu, S.C.
Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase
Photochem. Photobiol.
77
446-452
2003
Vibrio harveyi
brenda
Gao, B.; Bertrand, A.; Boles, W.H.; Ellis, H.R.; Mallett, T.C.
Crystallization and preliminary X-ray crystallographic studies of the alkanesulfonate FMN reductase from Escherichia coli
Acta Crystallogr. Sect. F
F61
837-840
2005
Escherichia coli
brenda
Li, X.; Tu, S.C.
Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): oxygen as a probe
Arch. Biochem. Biophys.
454
26-31
2006
Vibrio harveyi
brenda
Li, X.; Chow, D.C.; Tu, S.C.
Thermodynamic analysis of the binding of oxidized and reduced FMN cofactor to Vibrio harveyi NADPH-FMN oxidoreductase FRP apoenzyme
Biochemistry
45
14781-14787
2006
Vibrio harveyi
brenda
Deller, S.; Sollner, S.; Trenker-El-Toukhy, R.; Jelesarov, I.; Guebitz, G.M.; Macheroux, P.
Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis
Biochemistry
45
7083-7091
2006
Bacillus subtilis
brenda
Okai, M.; Kudo, N.; Lee, W.C.; Kamo, M.; Nagata, K.; Tanokura, M.
Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound
Biochemistry
45
5103-5110
2006
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii 7
brenda
Liu, G.; Zhou, J.; Lv, H.; Xiang, X.; Wang, J.; Zhou, M.; Qv, Y.
Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase
Appl. Microbiol. Biotechnol.
76
1271-1279
2007
Luteovulum sphaeroides, Luteovulum sphaeroides AS1.1737
brenda
Jawanda, N.; Ebalunode, J.; Gribenko, A.; Briggs, J.; Lee, J.C.; Tu, S.C.
A single-residue mutation destabilizes Vibrio harveyi flavin reductase FRP dimer
Arch. Biochem. Biophys.
472
51-57
2008
Vibrio harveyi
brenda
Jawanda, N.; Ahmed, K.; Tu, S.C.
Vibrio harveyi flavin reductase-luciferase fusion protein mimics a single-component bifunctional monooxygenase
Biochemistry
47
368-377
2008
Vibrio harveyi
brenda
Tu, S.C.
Activity coupling and complex formation between bacterial luciferase and flavin reductases
Photochem. Photobiol. Sci.
7
183-188
2008
Aliivibrio fischeri, Vibrio harveyi
brenda
Vorontsov, I.I.; Minasov, G.; Brunzelle, J.S.; Shuvalova, L.; Kiryukhina, O.; Collart, F.R.; Anderson, W.F.
Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity
Protein Sci.
16
2483-2490
2007
Shigella flexneri
brenda
Campbell, Z.T.; Baldwin, T.O.
Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli
J. Biol. Chem.
284
8322-8328
2009
Escherichia coli
brenda
Takahashi, S.; Furuya, T.; Ishii, Y.; Kino, K.; Kirimura, K.
Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B
J. Biosci. Bioeng.
107
38-41
2009
Bacillus subtilis, Bacillus subtilis WU-S2B
brenda
Chikuba, K.; Yubisui, T.; Shirabe, K.; Takeshita, M.
Cloning and nucleotide sequence of a cDNA of the human erythrocyte NADPH-flavin reductase
Biochem. Biophys. Res. Commun.
198
1170-1176
1994
Homo sapiens (P30043), Homo sapiens
brenda
Yubisui, T.; Tamura, M.; Takeshita, M.
Characterization of a second form of NADPH-flavin reductase purified from human erythrocytes
Biochem. Int.
15
1-8
1987
Homo sapiens
brenda
Shalloe, F.; Elliott, G.; Ennis, O.; Mantle, T.J.
Evidence that biliverdin-IX beta reductase and flavin reductase are identical
Biochem. J.
316
385-387
1996
Bos taurus
brenda
Cunningham, O.; Gore, M.G.; Mantle, T.J.
Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B)
Biochem. J.
345
393-399
2000
Homo sapiens (P30043), Homo sapiens
brenda
Chung, H.W.; Tu, S.C.
Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding
Biochemistry
51
4880-4887
2012
Vibrio harveyi
brenda
Haynes, R.K.; Cheu, K.W.; Tang, M.M.; Chen, M.J.; Guo, Z.F.; Guo, Z.H.; Coghi, P.; Monti, D.
Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified
ChemMedChem
6
279-291
2011
Escherichia coli
brenda
Kozmin, S.G.; Wang, J.; Schaaper, R.M.
Role for CysJ flavin reductase in molybdenum cofactor-dependent resistance of Escherichia coli to 6-N-hydroxylaminopurine
J. Bacteriol.
192
2026-2033
2010
Escherichia coli
brenda
Zenno, S.; Kobori, T.; Tanokura, M.; Saigo, K.
Purification and characetrizatio of NfrA1, a Bacillus subtilis nitro/flavin reductase capable of interacting with the bacterial luciferase
Biosci. Biotechnol. Biochem.
62
1978-1987
1998
Bacillus subtilis, Bacillus subtilis ISW 1214
brenda
Man, Z.; Rao, Z.; Xu, M.; Guo, J.; Yang, T.; Zhang, X.; Xu, Z.
Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply
Metab. Eng.
38
310-321
2016
Corynebacterium crenatum, Corynebacterium crenatum SYPA5-5
brenda
Leitsch, D.; Janssen, B.; Kolarich, D.; Johnson, P.; Duchene, M.
Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance
Mol. Microbiol.
91
198-208
2014
Trichomonas vaginalis (A2GH85), Trichomonas vaginalis, Trichomonas vaginalis G3 (A2GH85)
brenda