Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(16(R),5Z,8Z,11Z,14Z)-16-fluoroeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme: 78% of the 15,16(R) product and 22% of the 12,16(R) product
-
?
(16(R),5Z,8Z,11Z,14Z)-16-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme and mutant enzyme I593A prouce small amounts of unspecific products. Mutant enzyme F353L produces 6% of 15,16(R) product and 94% of the 12,16(R) product
-
?
(16(S),5Z,8Z,11Z,14Z)-16-fluoroeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme: 69% of the 15,16(S) product and 31% of the 12,16(S) product
-
?
(16(S)5Z,8Z,11Z,14Z)-16-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme: 93% of the 15,16(S) product and 7% of the 12,16(S) product
-
?
(17(R),5Z,8Z,11Z,14Z)-17-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme: 1% of the 15,17(R) product and 99% of the 12,17(R) product
-
?
(17(S),5Z,8Z,11Z,14Z)-17-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
-
wild-type enzyme: 3% of the 15,17(S) product and 97% of the 12,17(S) product
-
?
(18(R),5Z,8Z,11Z,14Z)-18-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
oxygenation proceeds with little if any enantioselectivity
-
-
?
(18(S),5Z,8Z,11Z,14Z)-18-hydroxyeicosa-5,8,11,14-tetraenoic acid + O2
?
oxygenation proceeds with little if any enantioselectivity
-
-
?
1,2-diarachidonoylglycerophosphocholine + O2
?
1-linoleoyl lysophosphatidic acid + O2
(S)-hydroperoxy 1-linoleoyl lysophosphatidic acid
-
i.e. linoleoyl-lysoPA
major product
-
?
1-linoleoyl lysophosphatidylcholine + O2
(S)-hydroperoxy 1-linoleoyl lysophosphatidylcholine
-
i.e. linoleoyl-lysoPC
major product
-
?
1-palmitoyl-2-arachidonyl phosphatidyl choline + O2
15S-HpETE
-
-
-
?
1-palmitoyl-2-docosahexaenoyl phosphatidyl choline + O2
17S-HpDHE
-
-
-
?
1-palmitoyl-2-eicosapentaenoyl phosphatidyl choline + O2
15S-HpEPE
-
-
-
?
1-palmitoyl-2-linoleoyl phosphatidyl choline + O2
(9E,11E)-13S-hydroperoxy-9,11-octadecadienoic acid
-
-
-
?
1-stearyl-2-arachidonyl glycerol + O2
15S-HpETE
-
-
-
?
1-stearyl-2-linoleoyl glycerol + O2
cholesteryl-(9E,11E)-13S-hydroperoxy-9,11-octadecadienoate
-
-
-
?
11,14,17-eicosatrienoic acid + O2
15-hydroperoxy-11,13,17-eicosatrienoic acid
-
-
-
?
2 arachidonate + 2 O2 + H+
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
8,11,14-eicosatrienoic acid + O2
15-hydroperoxy-8,11,13-eicosatrienoic acid
-
-
-
?
alpha-linoleic acid + O2
?
72% activity compared to arachidonate
-
-
?
alpha-linolenate + O2
(9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoic acid + (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid
arachidonate + O2
(5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
arachidonate + O2
(5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
ratio of (5Z,8Z,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate to (5Z,8Z,11Z,13E,15R)-15-hydroperoxyicosa-5,8,11,13-tetraenoate is 92:8
-
?
arachidonate + O2
(6E,8Z,11Z,14Z)-(5S)-5-hydroperoxyicosa-6,8,11,14-tetraenoate
-
-
-
-
?
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid + (12S,5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid
arachidonic acid + O2
13-hydroperoxyeicosatetraenoic acid + (5Z,8Z,11R,12E,14Z)-11-hydroperoxyicosa-5,8,12,14-tetraenoic acid + (5Z,8E,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid
arachidonic acid + O2
15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid
-
-
-
-
?
arachidonic acid + O2
?
-
-
-
-
?
cholesteryl arachidonate + O2
cholesteryl-15S-HpETE
-
-
-
?
cholesteryl linoleate + O2
cholesteryl-(9E,11E)-13S-hydroperoxy-9,11-octadecadienoate
-
-
-
?
cholesteryl linolenate + O2
cholesteryl-13S-HpOTE
-
-
-
?
dihomo-gamma-linolenic acid + O2
?
44% activity compared to arachidonate
-
-
?
dilinoleoyl phosphatidic acid + O2
(S)-hydroperoxy dilinoleoyl phosphatidic acid
-
i.e. dilinoleoylPA
-
-
?
dilinoleoyl phosphatidylcholine + O2
(S)-hydroperoxy dilinoleoyl phosphatidylcholine
-
i.e. dilinoleoylPC
-
-
?
docosahexaenoic acid + O2
?
72% activity compared to arachidonate
-
-
?
eicosadienoic acid + O2
?
33% activity compared to arachidonate
-
-
?
eicosapentaenoic acid + O2
15-hydroxyeicosapentaenoic acid
-
-
-
-
?
eicosapentanoic acid + O2
?
61% activity compared to arachidonate
-
-
?
eicosatrienoic acid + O2
?
-
-
-
-
?
gamma-linolenic acid + O2
?
44% activity compared to arachidonate
-
-
?
linoleate + O2
(9Z,11E)-(13S)-13-hydroperoxyoctadeca-9,11-dienoate
-
-
-
-
?
linoleate + O2
(9Z,11R,12Z)-11-hydroperoxyoctadeca-9,12-dienoate + (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate + (9R,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate
linoleate + O2
?
-
-
-
-
?
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxyoctadeca-9,11-dienoate
linoleic acid + O2
13(S)-hydroxyoctadecadienoic acid
-
-
12/15LO eicosanoid products reduce cholesterol efflux to high density lipoproteins, regulate ATP-binding cassette transporter G1 expression and enhance ATP-binding cassette transporter G1 degradation and ATP-binding cassette transporter G1 serine phosphorylation
-
?
linoleic acid + O2
13-hydroperoxy-(9Z,11E)-linoleic acid
linoleic acid + O2
13-hydroxylinoleic acid
linoleic acid + O2
13-hydroxyoctadecadienoic acid
-
-
-
-
?
linoleic acid + O2
13-S-hydroxyoctadecadienoic acid
-
both 15-LOX-1, 15-LOX-2 reacts with linoleic acid poorly
-
-
?
linolenate + O2
11-hydroperoxyoctadecatrienoic acid + 9-hydroperoxyoctadecatrienoic acid + 13-hydroperoxyoctadecatrienoic acid
lipoic acid + O2
?
-
-
-
-
r
additional information
?
-
1,2-diarachidonoylglycerophosphocholine + O2

?
-
-
-
?
1,2-diarachidonoylglycerophosphocholine + O2
?
-
-
-
?
2 arachidonate + 2 O2 + H+

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
-
-
(5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate slightly increases expression of monocyte chemoattractant protein MCP-1 in macrophages, also but more potent by 12(S)-hydroxyeicosatetranoic acid, overview, i.e. 15(S)-HPETE and 15(S)-HETE, the first is the predominant product
-
?
2 arachidonate + 2 O2 + H+
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
-
-
(5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate slightly increases expression of monocyte chemoattractant protein MCP-1 in macrophages, also but more potent by 12(S)-hydroxyeicosatetranoic acid, overview, i.e. 15(S)-HPETE and 15(S)-HETE, the first is the predominant product
-
?
alpha-linolenate + O2

(9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoic acid + (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid
-
-
-
?
alpha-linolenate + O2
(9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoic acid + (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid
-
-
-
?
arachidonate + O2

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
671247, 672376, 672543, 672899, 672902, 673030, 675201, 675909, 676263, 676923, 676925, 676927, 677239, 685266, 685525, 685526, 685584, 686173, 687052, 687235, 688159, 688509, 688751, 712712 -
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
and small amounts of (5Z,8Z,10E,14Z)-12-hydro(pero)xy-5,8,10,14-icosatetraenoic acid
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
15-hydroperoxy-5,8,11,13-eicosatetraenoic acid + 15-hydroxy-5,8,11,13-eicosatetraenoic acid
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
formation of 15S-hydroxyeicosatetraenoic acid and 12S-hydroxyeicosatetraenoic acid in a ratio of 12:1, double oxygenation products 14R,15S-dihydroxyeicosatetraenoic acid and various 8,15-dihydroxyeicosatetraenoic acids are also produced
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
ratio of 15-lipoxygenation to 12-lipoxygenation is 9:1 for the wild-type enzyme and the mutant enzymes V104I, L397M and Q431R. The ratio of 15-lipoxygenation to 12-lipoxygenation is 1:1 for the mutant enzymes V104/L397M/M418V/Q431R, L397M/M418V/Q431R, L397M/M418V and M418V
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
15-hydroxyeicosatetraenoic acid and 12-hydroxyeicosatetraenoic acid in a ratio of 8.6:1
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
further metabolized to (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate, 15-HETE, has no effect on the spontaneous and lipopolysaccharide-stimulated growth of leukemic blasts
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
the bifunctional enzyme also forms (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyeicosa-5,8,10,14-tetraenoate, the product of 12-LO activity, EC 1.13.11.31, in a ratio of 9:1 15(S)-HPETE to 12(S)-HPETE, further reduced to the correspondent (S)-hydroxy fatty acids, in eosinophils, overview, the bifunctional enzyme also forms (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyeicosa-5,8,10,14-tetraenoate, the product of 12-LO activity, EC 1.13.11.31, in a ratio of 9:1 15(S)-HPETE to 12(S)HPETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
is further metabolized to (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate, i.e. 15(S)-HETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells, it could be a suppressor of prostate cancer development, which functions by restricting cell cycle progression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
catalyzes enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is implicated in inflammatory disorders, 15-lipoxygenase is induced in atherosclerosis and can oxidize low-density lipoprotein to its atherogenic form
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
alternative splicing of 15S-lipoxygenase provides a further level of regulation of fatty acid metabolism
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
12/15LO protein levels and activity are increased in pathologically affected regions of AlzheimerĆ¢ĀĀs disease brains, enzyme inhibition causes a decrease in amyloid-beta protein, 12/15LO influences amyloid-beta protein precursor protein metabolism, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
15-lipoxygenase type-1 is a prooxidant enzyme, which is expressed in asthmatic lungs leading to formation of pro- and anti-inflammatory mediators, overview
the product is further metabolized to 15(S)-hydroxyeicosatetranoic acid and 15-ketoeicosatetraenoic acid, the latter is the main product, pathway and mechanism, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
15-LOX2 in NHP cells is positively regulated by Sp1 and negatively regulated by Sp3, but 15-LOX2 expression in NHP cells is not directly regulated by androgen/androgen receptor, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
arachidonic acid is metabolized by the 15-lipoxygenase-1 pathway to the vasodilatory eicosanoids hydroxyepoxyeicosatrienoic acid and trihydroxyeicosatrienoic acid
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
arachidonic acid metabolization by lipoxygenases, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is involved in acetylsalicylic acid-triggered production of 15(S)-hydroxyeicosatetranoic acid, 15(S)-HETE, in sensitive asthmatic patients, acetylsalicylate-tolerant asthma patients show reduced 15-LO activity
is metabolized to 15(S)-hydroxyeicosatetranoic, i.e. 15(S)-HETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme modifies high density lipoprotein 3, the major and most antiatherogenic HDL subfraction, and impairs anti-inflammatory activity of the lipoprotein, which, after modification, fails to inhibit TNFalpha-mediated mRNA and protein induction of adhesion molecules and monocyte chemoattractant protein-1, MCP-1, in endothelial cells, overview
is metabolized to 15(S)-hydroxyeicosatetranoic, i.e. 15(S)-HETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
immunohistochemic assay
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
preferred substrate of isozyme 15-hLO-2, reaction of EC 1.13.11.33
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
regioselective oxidation is achieved through control over the position of hydrogen atom abstraction by the geometry and size of the enzyme active site and through control by the protein over the interaction of molecular oxygen with the generated delocalized substrate radical, analysis of catalytic mechanisms of lipoxygenases using 10,10-dideuterated arachidonic acid, 13,13-dideuterated arachidonic acid, and 0,10,13,13-d4-AA, overview
isozymes 15-hLO-1 and 15-hLO-2 also form small amounts of 11-HPETE, 8-HPETE, and 12-HPETE, the rate of 8/12-HPETE production by isozyme 15-hLO-1 with 13,13-dideuterated arachidonic acid as substrate is exeptionally high with 75% of overall production, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
and nonenzymatic production of 15-hydroxy-5,8,11,13-eicosatetraenoic acid, 15-keto-5,8,11,13-eicosatetraenoic acid, 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid and 11,14,15-trihydroxy-5,8,12-eicosatrienoic acid
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
is further metabolized by hydroperoxide isomerase to the acid-sensitive metabolite 15(S)-hydroxy-11,12-epoxyeicosatrienoic acid, which is hydrolyzed to 11,12,15-trihydroxyeicosatrienoic acid, by a soluble epoxid hydrolase, causing endothelium-dependent smooth muscle hyperpolarization and relaxations, mass spectrometrical metabolite analysis and pathway, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
catalyzes enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
first step in biotransformation of arachidonic acid to the 15-series of leukotrienes, reaction is involved in inactivation of slow-reacting substrances of anaphylaxis
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
high oxygen affinity is important for effective catalysis, L367 is involved in oxygen access, channel structure, overview, arachidonic acid closes the substrate-binding pocket for oxygen diffusion but opens a fourth oxygen access channel
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
15-H(p)ETE is the major reaction product of 15-LOX-2 and 12/15-LOX independent of the pH
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
product ratio is 9 to 1
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
5fold higher affinity for arachidonic acid than for linoleic acid for 15-hLO-1
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
both 15-LOX-1 and -2
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
main product is 12(S)-hydroxyeicosatetranoic acid
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
15-H(p)ETE is the major reaction product independent of the pH
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
H2QBX9
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
12/15LO eicosanoid products reduce cholesterol efflux to high density lipoproteins, regulate ATP-binding cassette transporter G1 expression and enhance ATP-binding cassette transporter G1 degradation and ATP-binding cassette transporter G1 serine phosphorylation
-
?
arachidonic acid + O2

(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
-
-
the mutant enzyme A416G converts arachidonic acid to (11R)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid and (15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid in a 1.5:1 ratio
-
?
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
-
-
-
-
?
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
-
an atomic-level study of the binding modes of linoleic acid to rabbit reticulocyte 15-rLO-1 is presented. Results are compared with binding of arachidonic acid to 15-rLO-1. Linoleic acid seems to adapt more easily to the enzyme structure and differs from arachidonic acid on some dynamical aspects that could introduce kinetic differences, as observed experimentally
-
-
?
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
-
-
-
-
?
arachidonic acid + O2

(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid + (12S,5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid
-
93% (15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid and 7% (12S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
-
?
arachidonic acid + O2
(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid + (12S,5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid
-
-
the ratio of (15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid to (12S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid is 20 for the wild-type enzyme
-
?
arachidonic acid + O2

13-hydroperoxyeicosatetraenoic acid + (5Z,8Z,11R,12E,14Z)-11-hydroperoxyicosa-5,8,12,14-tetraenoic acid + (5Z,8E,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid
-
-
-
?
arachidonic acid + O2
13-hydroperoxyeicosatetraenoic acid + (5Z,8Z,11R,12E,14Z)-11-hydroperoxyicosa-5,8,12,14-tetraenoic acid + (5Z,8E,11Z,13E,15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoic acid
-
-
-
?
linoleate + O2

(9Z,11R,12Z)-11-hydroperoxyoctadeca-9,12-dienoate + (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate + (9R,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate
-
(9Z,11R,12Z)-11-hydroperoxyoctadeca-9,12-dienoate is the primary product
-
?
linoleate + O2
(9Z,11R,12Z)-11-hydroperoxyoctadeca-9,12-dienoate + (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate + (9R,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate
-
(9Z,11R,12Z)-11-hydroperoxyoctadeca-9,12-dienoate is the primary product
-
?
linoleic acid + O2

(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
-
reaction of EC 1.13.11.12
-
-
?
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
-
-
-
-
?
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
-
preferred substrate of isozyme 15-hLO-1, reaction of EC 1.13.11.12
-
-
?
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
78% activity compared to arachidonate
-
-
?
linoleic acid + O2

(9Z,11E)-(13S)-13-hydroperoxyoctadeca-9,11-dienoate
-
-
-
-
?
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxyoctadeca-9,11-dienoate
-
-
-
-
?
linoleic acid + O2

13-hydroperoxy-(9Z,11E)-linoleic acid
-
-
-
-
?
linoleic acid + O2
13-hydroperoxy-(9Z,11E)-linoleic acid
-
-
-
-
?
linoleic acid + O2

13-hydroxylinoleic acid
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
13-hydroperoxy-9,11-octadecadienoic acid + 13-hydroxy-9,11-octadecadienoic acid
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
-
?
linoleic acid + O2
13-hydroxylinoleic acid
-
-
-
-
?
linoleic acid + O2

?
-
-
-
-
?
linoleic acid + O2
?
-
-
-
-
?
linoleic acid + O2
?
-
4% of the activity with arachidonate
-
-
?
linoleic acid + O2
?
-
-
-
-
?
linoleic acid + O2
?
-
-
-
-
?
linoleic acid + O2
?
-
reaction of EC 1.13.11.12
-
-
?
linoleic acid + O2
?
-
an atomic-level study of the binding modes of linoleic acid to rabbit reticulocyte 15-rLO-1 is presented. Results are compared with binding of arachidonic acid to 15-rLO-1. Linoleic acid seems to adapt more easily to the enzyme structure and differs from arachidonic acid on some dynamical aspects that could introduce kinetic differences, as observed experimentally
-
-
?
linolenate + O2

11-hydroperoxyoctadecatrienoic acid + 9-hydroperoxyoctadecatrienoic acid + 13-hydroperoxyoctadecatrienoic acid
-
-
-
?
linolenate + O2
11-hydroperoxyoctadecatrienoic acid + 9-hydroperoxyoctadecatrienoic acid + 13-hydroperoxyoctadecatrienoic acid
-
-
-
?
additional information

?
-
incubation of the enzyme with [(11S)-2H]-linoleic acid leads to the formation of hydroperoxides that have lost the deuterium label, thus suggesting that LOX2 catalyzes antarafacial oxygenation as opposed to the mechanism of manganese lipoxygenase
-
-
?
additional information
?
-
incubation of the enzyme with [(11S)-2H]-linoleic acid leads to the formation of hydroperoxides that have lost the deuterium label, thus suggesting that LOX2 catalyzes antarafacial oxygenation as opposed to the mechanism of manganese lipoxygenase
-
-
?
additional information
?
-
-
the enzyme may be involved in the development of atherosclerosis
-
-
?
additional information
?
-
-
15-LOX2 and 15-LOX2sv-b suppress prostate tumor development, and the tumor-suppressive functions apparently do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization
-
-
?
additional information
?
-
15-LOX2 is a functional tumor suppressor that regulates prostate epithelial cell differentiation, senescence, and growth size, overview
-
-
?
additional information
?
-
-
15-LOX2 is a functional tumor suppressor that regulates prostate epithelial cell differentiation, senescence, and growth size, overview
-
-
?
additional information
?
-
-
eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in eosinophils and mast cells, metabolism of 14,15-leukotrienes in eosinophils, overview
-
-
?
additional information
?
-
a bifunctional enzyme exhibiting 12-LO and 15-LO activity
-
-
?
additional information
?
-
-
a bifunctional enzyme exhibiting 15-lipoxygenase and 12-lipoxygenase, EC 1.13.11.31, activities
-
-
?
additional information
?
-
-
conjugated linoleic acids are no substrates for 15-LO-1 in vitro, overview
-
-
?
additional information
?
-
-
product distributions of lipoxygenases under various conditions, overview
-
-
?
additional information
?
-
-
substrate specificity of 15-hLO isozymes, the specific activity is affected by cholate and lipoxygenation reaction products, e.g. 13-hydroperoxyoctadienoic acid changes the (kcat/Km)AA/(kcat/Km)LA ratio more than 5fold for 15-hLO-1 and 3fold for 15-hLO-2, while 12-(S)-hydroperoxyeicosatetraenoic acid affects only the ratio of 15-hLO-1 more than 5fold. In addition, 13-(S)-hydroxyoctadecadienoic acid and 12-(S)-hydroxyeicosatetraenoic acid also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the (kcat/Km)AA/(kcat/Km)LA ratio, residues R402, F414, F352, I417, and M418 are located at the active site and involved in catalysis, presence of a product-activated, allosteric regulatory site for both 15-hLO isozymes, competitive substrate capture experiments, overview
-
-
?
additional information
?
-
-
15-LOX-2 does not oxygenate (5Z,8Z,11Z,14Z)-nonadeca-5,8,11,14-tetraene-1,19-dioic acid at various pH
-
-
?
additional information
?
-
-
15LO1 interacts with PEBP1 (phosphatidylethanolamine-binding protein)
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type subject produces 21% 12-hydroperoxyicosatetraenoate and 79% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
15-LOX is a non-heme iron-containing dioxygenase that oxygenates polyunsaturated fatty acids (PUFA) containing cis,cis-1,4-pentadiene moieties
-
-
?
additional information
?
-
human 15-LOX type 1 (ALOX15) is a predominantly 15-lipoxygenating enzyme, which produces only little amounts of (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate (ratio of 9:1)
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation. Intraenzyme oxygen movement
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation. Intraenzyme oxygen movement
-
-
?
additional information
?
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification
-
-
?
additional information
?
-
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
specificity of phospholipid binding by 15-LOX-2, overview
-
-
?
additional information
?
-
the enzymatic peroxidation reaction consists of four consecutive steps: At first a hydrogen atom is stereoselectively abstracted from one of the bisallylic methylene-groups forming an enzyme-bound radical. Secondly one of the two associated cis-double bonds is rearranged and forms a conjugated cis-trans-diene. Consecutively a peroxy radical is produced by inserting molecular oxygen. Finally the radical is reduced by antarafacial re-inserting of a hydrogen atom. The resulting product of this peroxidation reaction depends on the respective fatty acid, which is used as a substrate
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
the enzyme also converts linoleate to (9Z,11E,13S)-13-hydroperoxy-11,13-octadecadienoate
-
-
?
additional information
?
-
-
the enzyme also converts linoleate to (9Z,11E,13S)-13-hydroperoxy-11,13-octadecadienoate
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
-
a bifunctional enzyme exhibiting 12-LO and 15-LO activity, the enzyme is also able to catalyze stereoselective oxidation of linoleic acid at position 13 over 9 to preferentially form 13(S)-hydroperoxyoctadienoic acid, which enhances MCP-1 expression, overview
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification. Intraenzyme oxygen movement
-
-
?
additional information
?
-
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification. Intraenzyme oxygen movement
-
-
?
additional information
?
-
the enzymatic peroxidation reaction consists of four consecutive steps: At first a hydrogen atom is stereoselectively abstracted from one of the bisallylic methylene-groups forming an enzyme-bound radical. Secondly one of the two associated cis-double bonds is rearranged and forms a conjugated cis-trans-diene. Consecutively a peroxy radical is produced by inserting molecular oxygen. Finally the radical is reduced by antarafacial re-inserting of a hydrogen atom. The resulting product of this peroxidation reaction depends on the respective fatty acid, which is used as a substrate
-
-
?
additional information
?
-
-
a bifunctional enzyme exhibiting 12-LO and 15-LO activity, the enzyme is also able to catalyze stereoselective oxidation of linoleic acid at position 13 over 9 to preferentially form 13(S)-hydroperoxyoctadienoic acid, which enhances MCP-1 expression, overview
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 54% 12-hydroperoxyicosatetraenoate and 46% 15-hydroperoxyicosatetraenoate with 76% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
the enzyme also converts linoleate to (9Z,11E,13S)-13-hydroperoxy-11,13-octadecadienoate, alpha-linolenate to (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoate and gamma-linolenate to (6Z,9Z,11E,13S)-13-hydroperoxy-6,9,11-octadecatrienoate
-
-
?
additional information
?
-
-
15-lipoxygenase is capable of disrupting the pH gradient maintained by mitochondria in living cells without additional factors specific for red blood cell development. Ectopic expression of 15-lipoxygenase leads to the collaps of the mitochondrial pH gradient in nonerythroid cells
-
-
?
additional information
?
-
-
activation of the enzyme at the protein and product levels and increased sensitivity to constriction of pulmonary arteries by the product 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid may contribute to pulmonary hypoxic vasoconstriction in neonatal rabbits
-
-
?
additional information
?
-
-
the enzyme may be involved in the development of atherosclerosis
-
-
?
additional information
?
-
-
stereo-selectivity in LOX-catalyzed oxygenation of lysophospholipids, overview
-
-
?
additional information
?
-
-
the bifunctional enzyme also forms (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyeicosa-5,8,10,14-tetraenoate, the product of 12-LO activity, EC 1.13.11.31, in a ratio of 9:1 15(S)-HPETE to 12(S)HPETE
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. The wild-type animal produces 3% 12-hydroperoxyicosatetraenoate and 97% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Molecular docking studies of a phospholipid molecule at the active site of rabbit ALOX15. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification. Intraenzyme oxygen movement
-
-
?
additional information
?
-
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Molecular docking studies of a phospholipid molecule at the active site of rabbit ALOX15. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification. Intraenzyme oxygen movement
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
H2QBX9
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 20% 12-hydroperoxyicosatetraenoate and 80% 15-hydroperoxyicosatetraenoate with 135% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
H2QBX9
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 78% 12-hydroperoxyicosatetraenoate and 22% 15-hydroperoxyicosatetraenoate with 37% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 14% 12-hydroperoxyicosatetraenoate and 86% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
prediction of reaction specificity of mammalian ALOX15 orthologues, and reaction specificity of ALOX15 orthologues during late primate evolution
-
-
?
additional information
?
-
-
production of antiinflammatory lipid mediators by the enzyme may be a general strategy by which pathogens regulate the host-pathogen relationship
-
-
?
additional information
?
-
enzyme LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid substrates, e.g. arachidonate and linoleate with high positional specificity, indicating a 15-LOX, its mechanism includes hydrogen atom abstraction. LoxA also does not react with 5- or 15-15-hydroperoxyicosatetraenoates, or phosphoester fatty acids
-
-
?
additional information
?
-
-
enzyme LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid substrates, e.g. arachidonate and linoleate with high positional specificity, indicating a 15-LOX, its mechanism includes hydrogen atom abstraction. LoxA also does not react with 5- or 15-15-hydroperoxyicosatetraenoates, or phosphoester fatty acids
-
-
?
additional information
?
-
-
trans-10,cis-12-conjugated linoleic acid is not a substrate for 15-LOX-1
-
-
?
additional information
?
-
in the brain, the principal 12/15-LOX metabolites of arachidonate are (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate, cf. EC 1.13.11.31, and (5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
enzyme substrate specificity, overview. The ALOX15 enzyme activity is not restricted to free polyenoic fatty acids since phospholipids and even biomembranes and lipoproteins are suitable ALOX15 substrates. The ALOX15 orthologue is capable of converting hydroperoxy fatty acids to epoxy leukotrienes. Product specificity with polyenoic acids and with complex substrates, and alteration of product specificity by substrate modification. Intraenzyme oxygen movement
-
-
?
additional information
?
-
in the brain, the principal 12/15-LOX metabolites of arachidonate are (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate, cf. EC 1.13.11.31, and (5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
?
additional information
?
-
-
12/15-LO can catalyse the formation of EXC4
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2 arachidonate + 2 O2 + H+
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
linoleic acid + O2
(9Z,11E)-(13S)-13-hydroperoxy-octadeca-9,11-dienoate
-
-
-
-
?
additional information
?
-
2 arachidonate + 2 O2 + H+

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
-
-
(5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate slightly increases expression of monocyte chemoattractant protein MCP-1 in macrophages, also but more potent by 12(S)-hydroxyeicosatetranoic acid, overview
-
?
2 arachidonate + 2 O2 + H+
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate + (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate + H2O
-
-
(5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate slightly increases expression of monocyte chemoattractant protein MCP-1 in macrophages, also but more potent by 12(S)-hydroxyeicosatetranoic acid, overview
-
?
arachidonate + O2

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
further metabolized to (5Z,8Z,11Z,13E)-(15S)-15-hydroxyeicosa-5,8,11,13-tetraenoate, 15-HETE, has no effect on the spontaneous and lipopolysaccharide-stimulated growth of leukemic blasts
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
the bifunctional enzyme also forms (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyeicosa-5,8,10,14-tetraenoate, the product of 12-LO activity, EC 1.13.11.31, in a ratio of 9:1 15(S)-HPETE to 12(S)-HPETE, further reduced to the correspondent (S)-hydroxy fatty acids, in eosinophils, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells, it could be a suppressor of prostate cancer development, which functions by restricting cell cycle progression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
catalyzes enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is implicated in inflammatory disorders, 15-lipoxygenase is induced in atherosclerosis and can oxidize low-density lipoprotein to its atherogenic form
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
alternative splicing of 15S-lipoxygenase provides a further level of regulation of fatty acid metabolism
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
12/15LO protein levels and activity are increased in pathologically affected regions of AlzheimerĆ¢ĀĀs disease brains, enzyme inhibition causes a decrease in amyloid-beta protein, 12/15LO influences amyloid-beta protein precursor protein metabolism, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
15-lipoxygenase type-1 is a prooxidant enzyme, which is expressed in asthmatic lungs leading to formation of pro- and anti-inflammatory mediators, overview
the product is further metabolized to 15(S)-hydroxyeicosatetranoic acid and 15-ketoeicosatetraenoic acid, the latter is the main product, pathway and mechanism, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
15-LOX2 in NHP cells is positively regulated by Sp1 and negatively regulated by Sp3, but 15-LOX2 expression in NHP cells is not directly regulated by androgen/androgen receptor, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
arachidonic acid is metabolized by the 15-lipoxygenase-1 pathway to the vasodilatory eicosanoids hydroxyepoxyeicosatrienoic acid and trihydroxyeicosatrienoic acid
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
arachidonic acid metabolization by lipoxygenases, overview
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is involved in acetylsalicylic acid-triggered production of 15(S)-hydroxyeicosatetranoic acid, 15(S)-HETE, in sensitive asthmatic patients, acetylsalicylate-tolerant asthma patients show reduced 15-LO activity
is metabolized to 15(S)-hydroxyeicosatetranoic, i.e. 15(S)-HETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme modifies high density lipoprotein 3, the major and most antiatherogenic HDL subfraction, and impairs anti-inflammatory activity of the lipoprotein, which, after modification, fails to inhibit TNFalpha-mediated mRNA and protein induction of adhesion molecules and monocyte chemoattractant protein-1, MCP-1, in endothelial cells, overview
is metabolized to 15(S)-hydroxyeicosatetranoic, i.e. 15(S)-HETE
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
-
is further metabolized by hydroperoxide isomerase to the acid-sensitive metabolite 15(S)-hydroxy-11,12-epoxyeicosatrienoic acid, which is hydrolyzed to 11,12,15-trihydroxyeicosatrienoic acid, by a soluble epoxid hydrolase, causing endothelium-dependent smooth muscle hyperpolarization and relaxations, mass spectrometrical metabolite analysis and pathway, overview
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
catalyzes enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
first step in biotransformation of arachidonic acid to the 15-series of leukotrienes, reaction is involved in inactivation of slow-reacting substrances of anaphylaxis
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
the enzyme is regulated pretranslational, translational and posttranslational
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyeicosa-5,8,11,13-tetraenoate
-
induction of experimental anemia leads to a systemic up-regulation of 12/15-lipoxygenases expression
-
-
?
arachidonate + O2

(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
best substrate
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
H2QBX9
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
arachidonate + O2
(5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
-
?
additional information

?
-
-
the enzyme may be involved in the development of atherosclerosis
-
-
?
additional information
?
-
-
15-LOX2 and 15-LOX2sv-b suppress prostate tumor development, and the tumor-suppressive functions apparently do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization
-
-
?
additional information
?
-
15-LOX2 is a functional tumor suppressor that regulates prostate epithelial cell differentiation, senescence, and growth size, overview
-
-
?
additional information
?
-
-
15-LOX2 is a functional tumor suppressor that regulates prostate epithelial cell differentiation, senescence, and growth size, overview
-
-
?
additional information
?
-
-
eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in eosinophils and mast cells, metabolism of 14,15-leukotrienes in eosinophils, overview
-
-
?
additional information
?
-
-
15LO1 interacts with PEBP1 (phosphatidylethanolamine-binding protein)
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type subject produces 21% 12-hydroperoxyicosatetraenoate and 79% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
15-LOX is a non-heme iron-containing dioxygenase that oxygenates polyunsaturated fatty acids (PUFA) containing cis,cis-1,4-pentadiene moieties
-
-
?
additional information
?
-
human 15-LOX type 1 (ALOX15) is a predominantly 15-lipoxygenating enzyme, which produces only little amounts of (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate (ratio of 9:1)
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation. Intraenzyme oxygen movement
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation. Intraenzyme oxygen movement
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 54% 12-hydroperoxyicosatetraenoate and 46% 15-hydroperoxyicosatetraenoate with 76% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
-
15-lipoxygenase is capable of disrupting the pH gradient maintained by mitochondria in living cells without additional factors specific for red blood cell development. Ectopic expression of 15-lipoxygenase leads to the collaps of the mitochondrial pH gradient in nonerythroid cells
-
-
?
additional information
?
-
-
activation of the enzyme at the protein and product levels and increased sensitivity to constriction of pulmonary arteries by the product 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid may contribute to pulmonary hypoxic vasoconstriction in neonatal rabbits
-
-
?
additional information
?
-
-
the enzyme may be involved in the development of atherosclerosis
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. The wild-type animal produces 3% 12-hydroperoxyicosatetraenoate and 97% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
H2QBX9
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 20% 12-hydroperoxyicosatetraenoate and 80% 15-hydroperoxyicosatetraenoate with 135% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 78% 12-hydroperoxyicosatetraenoate and 22% 15-hydroperoxyicosatetraenoate with 37% overall activity compared to the human enzyme activity
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview
-
-
?
additional information
?
-
15-lipoxygenating ALOX15 orthologs exhibit significantly higher lipoxin-synthesizing capacities than 12-lipoxygenating. Product pattern of primate ALOX15 orthologues, overview. The wild-type animal produces 14% 12-hydroperoxyicosatetraenoate and 86% 15-hydroperoxyicosatetraenoate
-
-
?
additional information
?
-
-
production of antiinflammatory lipid mediators by the enzyme may be a general strategy by which pathogens regulate the host-pathogen relationship
-
-
?
additional information
?
-
in the brain, the principal 12/15-LOX metabolites of arachidonate are (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate, cf. EC 1.13.11.31, and (5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
?
additional information
?
-
the major reaction products are identified as(8S,15S,5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-DiHPETE) and the stereochemistry of the reaction is compatible with an inverse substrate orientation
-
-
?
additional information
?
-
in the brain, the principal 12/15-LOX metabolites of arachidonate are (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate, cf. EC 1.13.11.31, and (5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(-)-5,7-O-diacetyl-3',4',5'-O-triacetylepigallocatechin-3-O-(3'',4'',5''-O-triacetyl)gallate
-
IC50: 0.061 mM
(-)-5,7-O-dibutyryl-3',4',5'-O-tributyrylepigallocatechin-3-O-(3'',4'',5''-O-tributyryl) gallate
-
IC50: 0.033 mM
(-)-5,7-O-dimethyl-3',4',5'-O-trimethylepigallocatechin-3-O-(3'',4'',5''-O-trimethyl) gallate
-
IC50: 0.03 mM
(-)-5,7-O-dipropionyl-3',4',5'-O-tripropionylepigallocatechin-3-O-(3'',4'',5''-O-tripropionyl) gallate
-
IC50: 0.031 mM
(-)-epigallocatechin-3-gallate
-
IC50: 0.1 mM
(-)-jaspic acid
-
IC50: 0.0014 mM
(Z)-9-octadecenyl sulfate
-
allosteric inhibition
1,2,3-triphenylindolizine-7-carbonitrile
-
IC50: 0.028 mM
1-(((2,4,6-trimethylphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.017 mM
1-(((2,4-dimethoxyphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.027 mM
1-(((2,5-dimethoxyphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.015 mM
1-(((2-methyl)ethylsulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.042 mM
1-(((2-methyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.022 mM
1-(((2-thienyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.021 mM
1-(((3,4-dimethoxyphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.019 mM
1-(((3-thienyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.023 mM
1-(((4-(2-methylethyl)phenl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.016 mM
1-(((4-chlorophenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.022 mM
1-(((4-methoxyphenyl)sulfonyl)oxy)-2,3-bis(4-methylphenyl)-7-indolizinecarbonitrile
-
IC50: 0.025 mM
1-(((4-methoxyphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.025 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-bis(4-chlorophenyl)-7-indolizinecarbonitrile
-
IC50: 0.2 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-bis(4-fluorophenyl)-7-indolizinecarbonitrile
-
IC50: 0.22 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-bis(4-methoxyphenyl)-7-indolizinecarbonitrile
-
IC50: 0.024 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-bis(4-methylphenyl)-7-indolizinecarbonitrile
-
IC50: 0.2 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-dibutyl-7-indolizinecarbonitrile
-
IC50: 0.03 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-diethyl-7-indolizinecarbonitrile
-
IC50: 0.029 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarboxaldehyde
-
IC50: 0.02 mM
1-(((4-methylphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinylethanone
-
IC50: 0.023 mM
1-(((4-methysulfonyllphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.024 mM
1-(((4-trifluoromethylphenyl)sulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.023 mM
1-((4-methylphenyl)sulfonyl)2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.029 mM
1-((butylsulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.028 mM
1-((methylsulfonyl)oxy)-2,3-diphenyl-7-indolizine-carbonitrile
-
IC50: 0.022 mM
1-((N,N-dimethylaminosulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.025 mM
1-((phenylsulfonyl)oxy)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.024 mM
1-(1,3-dibenzyloxy-2-propyloxy)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.031 mM
1-(1-Hydroxy-1-phenyl-ethyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.017 mM
1-(1-hydroxyethyl)-2,3-diphenylindolizine-7-carbonitrile
-
IC50: 0.026 mM
1-(2-furyl)-2,3-diphenylindolizine-7-carbonitrile
-
IC50: 0.024 mM
1-(2-Methoxy-phenyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.02 mM
1-(2-methoxyphenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.029 mM
1-(3-chlorobenzoyl)-N-(2-chlorophenyl)-1H-pyrazole-3-carboxamide
-
1-(3-chlorophenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.031 mM
1-(3-Methoxy-phenyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.02 mM
1-(4-chlorophenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.031 mM
1-(4-fluorophenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.035 mM
1-(4-Methoxy-phenyl)-2,3-diphenyl-indolizine-7-carbonitrile
1-(4-methoxyphenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.032 mM
1-(4-methylphenyl)methoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.037 mM
1-(4-tert-butylphenyl)-4-[4-(diphenylmethoxy)piperidin-1-yl]butan-1-one
-
1-(Cyclohexyl-hydroxy-methyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.023 mM
1-(Hydroxy-p-tolyl-methyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.022 mM
1-(Hydroxy-phenyl-methyl)-2,3-diphenyl-indolizine-7-carbonitrile
1-(hydroxymethyl)-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.026 mM
1-(hydroxymethyl)-2,3-diphenylindolizine-7-carbonitrile
-
IC50: 0.034 mM
1-(Methoxy-phenyl-methyl)-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.021 mM
1-(methoxymethoxy)-2,3-diphenylindolizine-7-carbonitrile
1-acetyl-2,3-diphenylindolizine-7-carbonitrile
1-acetyl-N-(3,4-dichlorophenyl)-1H-pyrazole-3-carboxamide
-
1-benzoyl-2,3-diphenylindolizine-7-carbonitrile
1-benzyl-2,3-diphenylindolizine-7-carbonitrile
-
IC50: 0.027 mM
1-benzyl-N-(2-chlorophenyl)-1H-pyrazole-3-carboxamide
-
1-benzyloxymethoxy-2,3-diphenyl-7-indolizinecarbonitrile
1-formyl-2,3-diphenylindolizine-7-carbonitrile
1-methoxy-2,3-diphenylindolizine-7-carbonitrile
1-methyl-2,3-diphenylindolizine-7-carbonitrile
1-phenylmethoxy-2,3-diphenyl-7-indolizinecarbonitrile
-
IC50: 0.031 mM
1-[(2H-1,3-benzodioxol-5-yl)carbamothioyl]-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
1-[(4-Chloro-phenyl)-hydroxy-methyl]-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.023 mM
1-[1-[4,4-bis(4-fluorophenyl)butyl]piperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one
-
1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine
-
1-[4-[4-([[5-(3-chlorophenyl)furan-2-yl]methyl]amino)phenyl]piperazin-1-yl]ethan-1-one
-
1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine
-
1-[Hydroxy-(4-methoxy-phenyl)-methyl]-2,3-diphenyl-indolizine-7-carbonitrile
-
IC50: 0.017 mM
11-hydroxytephrosin
-
IC50: 0.071 mM
11-thialinoleic acid
-
is a noncompetitive inhibitor of 15-lipoxygenase-1 with respect to arachidonate or linoleic acid as substrates. Presence of inhibitor does not alter the product distribution for 15-lipoxygenase-1. It does not change the regioselectivity of 15-lipoxygenase-1
12alpha-hydroxydeguelin
-
IC50: 0.018 mM
12alpha-hydroxyrotenone
-
IC50: 0.102 mM
13S-hydroperoxy-9E,11E-octadecydienoic acid
-
rapidly inactivates
2,3,4,5-tetrabromo-6-(2,4-dibromophenoxy)phenol
2,3,4,5-tetrabromo-6-(3,5-dibromo-2-hydroxyphenoxy)phenol
-
IC50: 0.00079 mM
2,3,5-tribromo-6-(3,5-dibromo-2-hydroxyphenoxy)phenol
-
IC50: 0.0022 mM
2,3-bis(4-chlorophenyl)-7-indolizinecarbonitrile
-
IC50: 0.033 mM
2,3-bis(4-fluorophenyl)-7-indolizinecarbonitrile
-
IC50: 0.03 mM
2,3-bis(4-methylphenyl)-7-indolizinecarbonitrile
-
IC50: 0.027 mM
2,3-Dihydroxybenzoic acid
-
47.7% inhibition at 0.015 mM, active site binding structure
2,3-diphenyl-1-(2-thienyl)indolizine-7-carbonitrile
-
IC50: 0.02 mM
2,3-diphenyl-1-(3-thienyl)indolizine-7-carbonitrile
-
IC50: 0.019 mM
2,3-diphenyl-1-indolizinol tosylate
-
IC50: 0.025 mM
2,3-diphenylindolizine-7-carbonitrile
2,4-dibromo-6-(2,4-dibromo-6-methoxyphenoxy)phenol
-
IC50: 0.01 mM
2,4-Dibromophenol
-
IC50: 0.034 mM
2,4-dihydroxybenzoic acid
-
49.9% inhibition at 0.015 mM, active site binding structure
2,5-dihydroxybenzoic acid
-
21.2% inhibition at 0.015 mM, active site binding structure
2,6-dibromo-4-[1-(3-bromo-4-hydroxyphenyl)-1-methylethyl]phenol
-
IC50: 0.005 mM
2-(1H-indol-3-yl)-N-[(4-pentylphenyl)sulfonyl]acetamide
-
-
2-(1H-pyrazol-3-yl)-1,3-benzoxazole
-
2-(4-chlorophenyl)-5-cyclohexyl-1,3,4-oxadiazole
-
2-(4-ethylpiperazin-1-yl)4-methylpyrimido[4,5-b][1,4]benzothiazine
-
-
2-(4-ethylpiperazin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-(4-methylpiperazin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-(4-methylpiperidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-(morpholin-4-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-(piperidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-(pyrrolidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
2-([4-[(4-fluorobenzyl)oxy]butyl]sulfanyl)-5-(naphthalen-1-yl)-1,3,4-oxadiazole
-
-
2-alkyl benzopyran-4-ones
-
weak inhibition of isozymes 15-hLO-1 and 15-hLO-2
2-alkyl-6-hydroxy-4-H-benzopyran-4-one
-
weak inhibition of isozymes 15-hLO-1 and 15-hLO-2
2-hydroxybenzoic acid
-
46.0% inhibition at 0.015 mM, active site binding structure
2-[2-(1H-indol-3-yl)ethyl]-1H-isoindole-1,3(2H)-dione
-
-
2-[2-(2-bromo-1H-indol-3-yl)ethyl]-1H-isoindole-1,3(2H)-dione
-
-
2-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-1H-isoindole-1,3(2H)-dione
-
-
2-[3-(1H-indol-3-yl)propyl]-1H-isoindole-1,3(2H)-dione
-
-
2-[4-[(1Z)-1,2-diphenylbut-1-en-1-yl]phenoxy]-N,N-dimethylethan-1-amine
-
3'-chloro-7,8-dihydroxyisoflavone
-
weak inhibition of isozyme 15-hLO-2
3,4,5-Trihydroxybenzoic acid
-
60.5% inhibition at 0.015 mM, active site binding structure
3,4,6,8-tetrabromooxanthren-1-ol
-
IC50: 0.0009 mM
3,4,6-tribromo-2-(2,4-dibromophenoxy)phenol
3,4-dibromo-2-(5-bromo-2-hydroxyphenoxy)phenol
-
IC50: 0.011 mM
3,4-dihydroxybenzoic acid
-
51.6% inhibition at 0.015 mM, active site binding structure; 73.3% inhibition at 0.015 mM, active site binding structure
3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one
3,5-Dihydroxybenzoic acid
-
58.1% inhibition at 0.015 mM, active site binding structure
3,6,8-tribromooxanthren-1-ol
-
IC50: 0.0008 mM
3-(2-[[(4-pentylphenyl)sulfonyl]amino]ethyl)-1H-indole-6-carboxylic acid
-
-
3-(4-bromophenyl)-6-(4-chlorophenyl)-N-(2,4,4-trimethylpentan-2-yl)imidazo[2,1-b][1,3]thiazol-5-amine
-
3-(4-bromophenyl)-6-(4-chlorophenyl)-N-cyclohexylimidazo[2,1-b][1,3]thiazol-5-amine
-
3-(4-bromophenyl)-N-cyclohexyl-6-(2-nitrophenyl)imidazo[2,1-b][1,3]thiazol-5-amine
-
3-(4-methoxyphenyl)-6-phenyl-N-(2,4,4-trimethylpentan-2-yl)imidazo[2,1-b][1,3]thiazol-5-amine
protective activity of compound 5i against H2O2-induced cell death in differentiated PC12 cells
3-hydroxy-H-benzopyran-4-one derivatives
-
weak inhibition of isozymes 15-hLO-1 and 15-hLO-2
3-Hydroxybenzoic acid
-
47.6% inhibition at 0.015 mM, active site binding structure
3-[1-[(4-pentylphenyl)sulfonyl]pyrrolidin-3-yl]-1H-indole
-
-
3-[3-bromo-5-(2,6-dibromo-4-{2-[2-(3-bromo-4-hydroxy-phenyl)-ethylcarbamoyl]-2-[(E)-hydroxyimino]-ethyl}-phenoxy)-4-methyl-phenyl]-N-[(E)-2-(3,5-dibromo-4-hydroxy-phenyl)-vinyl]-2-[(E)-hydroxyimino]-propionamide
4',6,7-trihydroxyisoflavan
-
-
4',6,7-trihydroxyisoflavanone
-
weak inhibition of isozyme 15-hLO-2
4',6,7-trihydroxyisoflavone
-
weak inhibition of isozyme 15-hLO-2
4'-butyl-N-[2-(1H-indol-3-yl)ethyl]biphenyl-4-sulfonamide
-
IC50: 0.00053 mM in the presence of arachidonate, IC50: 0.0002 mM in the presence of linoleic acid
4'-chloro-7,8-dihydroxyisoflavone
-
weak inhibition of isozyme 15-hLO-2
4'-ethyl-N-[2-(1H-indol-3-yl)ethyl]biphenyl-4-sulfonamide
-
IC50: 0.00026 mM in the presence of arachidonate, IC50: 0.00047 mM in the presence of linoleic acid
4'-tert-butyl-N-[2-(1H-indol-3-yl)ethyl]biphenyl-4-sulfonamide
-
IC50: 0.00027 mM in the presence of arachidonate, IC50: 0.00023 mM in the presence of linoleic acid
4,4'-(2,3-dimethylbutane-1,4-diyl)di(benzene-1,2-diol)
-
4,4'-propane-2,2-diylbis(2,6-dibromophenol)
-
IC50: 0.004 mM
4,5-bis(4-chlorophenyl)-1H-imidazole-2-thiol
-
-
4,5-bis(4-fluorophenyl)-1H-imidazole-2-thiol
-
-
4,5-bis(4-methoxyphenyl)-1H-imidazole-2-thiol
-
-
4,5-dichloro-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4,5-diphenyl-1H-imidazole-2-thiol
-
-
4,7,10,13-eicosatetraenoic acid
4-((5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)butyl)-4-fluorobenzoate
-
-
4-((5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)methyl)-benzyl-4-fluorobenzoate
-
-
4-(2-benzoylhydrazinyl)benzene-1-sulfonamide
10% inhibition
4-(2-chlorophenyl)-N-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]piperazine-1-sulfonamide
-
-
4-(3,4-dichlorophenyl)-N-methyl-1,2,3,4-tetrahydronaphthalen-1-amine
-
4-(3,4-dichlorophenyl)-N-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]piperazine-1-sulfonamide
-
-
4-(3,4-dichlorophenyl)-N-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]piperazine-1-sulfonamide
-
-
4-(4-chlorophenyl)-5-phenyl-1H-imidazole-2-thiol
-
-
4-(4-methoxyphenyl)-5-phenyl-1H-imidazole-2-thiol
-
-
4-(5-(1H-indol-2-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(2-chlorophenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(2-fluorophenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(3-hydroxynaphthalen-2-yl)-1,3,4-oxadiazol-2-ylthio)-but-2-ynyl-4-fluorobenzoate
-
low solubility
4-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(4-fluorophenyl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(furan-2-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylamino)but-2-ynyl-thiophene-2-carboxylate
-
-
4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)but-2-yn-1-ol
-
-
4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-1H-indole-4-carboxylate
-
-
4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-benzofuran-2-carboxylate
-
-
4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-thiophene-2-carboxylate
-
-
4-(5-(naphthalen-1-yl)-1,3,4-thiadiazol-2-ylthio)but-2-ynyl-thiophene-2-carboxylate
-
low solubility
4-(5-(quinolin-5-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-(5-phenyl-1,3,4-oxadiazol-2-ylthio)but-2-ynyl-4-fluorobenzoate
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-(3-hydroxypropyl)benzamide
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-(4-methoxyphenyl)benzamide
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-butylbenzamide
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-cyclohexylbenzamide
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-phenylbenzamide
-
-
4-([2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]sulfamoyl)-N-[3-(dimethylamino)propyl]benzamide
-
-
4-([2-[2-(4-methoxyphenyl)-1H-indol-3-yl]ethyl]sulfamoyl)benzoic acid
-
-
4-allyl-2-methoxyphenyl 1-adamantanecarboxylate
4-allyl-2-methoxyphenyl 1-cyclohexanecarboxylate
4-allyl-2-methoxyphenyl 2-chlorobenzoate
4-allyl-2-methoxyphenyl 2-fluorobenzoate
4-allyl-2-methoxyphenyl 2-methylbenzoate
4-allyl-2-methoxyphenyl 2-pyridinecarboxylate
4-allyl-2-methoxyphenyl 3-chlorobenzoate
4-allyl-2-methoxyphenyl 3-fluorobenzoate
4-allyl-2-methoxyphenyl 3-methoxybenzoate
4-allyl-2-methoxyphenyl 3-methylbenzoate
4-allyl-2-methoxyphenyl 4-chlorobenzoate
4-allyl-2-methoxyphenyl 4-fluorobenzoate
4-allyl-2-methoxyphenyl 4-methoxybenzoate
4-allyl-2-methoxyphenyl 4-methylbenzoate
4-allyl-2-methoxyphenyl benzoate
4-allyl-2-methoxyphenyl isonicotinate
4-allyl-2-methoxyphenyl nicotinate
4-amino-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4-bromo-5-chloro-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4-bromo-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4-bromo-N-[2-(1H-indol-3-yl)ethyl]benzenesulfonamide
-
-
4-butyl-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4-butyl-N-[2-(1H-indol-3-yl)ethyl]benzenesulfonamide
-
IC50: 0.00307 mM in the presence of arachidonate, IC50: 0.004 mM in the presence of linoleic acid
4-butyl-N-[2-[2-(4-methoxyphenyl)-1H-indol-3-yl]ethyl]benzenesulfonamide
-
-
4-butyl-N-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]piperazine-1-sulfonamide
-
-
4-chloro-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
4-chloro-N-(2-chloro-4-fluorophenyl)-5-(difluoromethyl)-1H-pyrazole-3-carboxamide
-
4-chloro-N-(2-chloro-4-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazole-3-carboxamide
-
4-chlorophenyl 3-[(2-chlorophenyl)carbamoyl]-1H-pyrazole-1-carboxylate
-
4-ethyl-N-[2-(1H-indol-3-yl)ethyl]benzenesulfonamide
-
IC50: 0.01 mM in the presence of arachidonate, IC50: 0.01 mM in the presence of linoleic acid
4-hydroxy-3-methoxybenzoic acid
-
45.4% inhibition at 0.015 mM, active site binding structure
4-hydroxybenzoic acid
-
47.0% inhibition at 0.015 mM, active site binding structure
4-methyl-2-(4-ethylpiperazin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(4-hydroxypiperidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(4-methylpiperazin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(4-methylpiperidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(4-phenylpiperazin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(morpholin-4-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(piperidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-methyl-2-(pyrrolidin-1-yl)pyrimido[4,5-b][1,4]benzothiazine
-
-
4-nitrocatechol
-
IC50: 0.0046 mM
4-pentyl-N-(2-[2-phenyl-5-[4-(trifluoromethyl)phenyl]-1H-imidazol-4-yl]ethyl)benzenesulfonamide
-
-
4-pentyl-N-(2-[2-[4-(trifluoromethyl)phenyl]-1H-indol-3-yl]ethyl)benzenesulfonamide
-
-
4-pentyl-N-[2-(2-phenyl-1H-indol-3-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(2-quinolin-3-yl-1H-indol-3-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-2-pyrazin-2-yl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-2-pyridin-2-yl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-2-pyridin-3-yl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-2-pyridin-4-yl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-(5-phenyl-2-thioformyl-1H-imidazol-4-yl)ethyl]benzenesulfonamide
-
-
4-pentyl-N-[2-[5-(1H-pyrrol-2-yl)-1H-indol-3-yl]ethyl]benzenesulfonamide
-
-
4-pentyl-N-[3-(5-phenyl-2-thioformyl-1H-imidazol-4-yl)propyl]benzenesulfonamide
-
-
4-[(E)-benzoyldiazenyl]benzene-1-sulfonamide
-
4-[(E)-benzoyldiazenyl]benzonitrile
80% inhibition, competitive
4-[4-(dimethylamino)phenyl]-5-(4-methoxyphenyl)-1H-imidazole-2-thiol
-
-
4-[4-(methylsulfanyl)phenyl]-5-phenyl-1H-imidazole-2-thiol
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 1-benzothiophene-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 1-benzothiophene-3-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 1H-imidazole-4-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 2,4-difluorobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 2-fluorobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 2-fluoropyridine-3-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 2-methoxybenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3,4,5-trichlorothiophene-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3,4,5-trifluorobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3,4-difluorobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3-(trifluoromethyl)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3-chloro-1-benzothiophene-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3-chlorothiophene-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 3-fluorobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-(difluoromethoxy)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-(methylsulfonyl)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-(triazan-2-yl)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-(trifluoromethoxy)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-(trifluoromethyl)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-bromobenzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-chloro-3-(trifluoromethyl)benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-[(trifluoromethyl)sulfanyl]benzoate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl benzoate
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl cyclobutanecarboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl cyclopentanecarboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl cyclopropanecarboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl furan-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl naphthalene-2-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl thiophene-3-carboxylate
-
-
4-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]butyl 4-fluorobenzoate
-
-
4-[[5-(naphthalen-2-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]but-2-yn-1-yl 4-fluorobenzoate
-
-
4-{[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}but-2-yn-1-yl 4-chlorobenzoate
-
-
4-{[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}but-2-yn-1-yl 4-fluorobenzoate
-
-
4-{[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}but-2-yn-1-yl 4-methoxybenzoate
-
-
5,8,11,14,17-eicosapentaenoic acid
5,8,11,14-eicosatetraenoic acid
5,8,11,14-Eicosatetraynoic acid
5-(4-chlorophenyl)-4-(4-methoxyphenyl)-1H-imidazole-2-thiol
-
-
5-(4-chlorophenyl)-4-(4-methoxyphenyl)-2-(methylsulfanyl)-1H-imidazole
-
-
5-(4-chlorophenyl)-4-[4-(dimethylamino)phenyl]-1H-imidazole-2-thiol
-
-
5-(4-chlorophenyl)-4-[4-(methylsulfanyl)phenyl]-1H-imidazole-2-thiol
-
-
5-(4-fluorophenyl)-4-(4-methoxyphenyl)-1H-imidazole-2-thiol
-
-
5-(4-fluorophenyl)-4-[4-(methylsulfanyl)phenyl]-1H-imidazole-2-thiol
-
-
5-(methoxymethoxy)-6,7-diphenylpyrrolo[1,2-b]pyridazine
5-amino-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
5-butyl-N3-(2-chloro-4-fluorophenyl)-N1-hexyl-1H-pyrazole-1,3-dicarboxamide
-
5-chloro-2-(1H-pyrazol-3-yl)-1,3-benzoxazole
-
5-chloro-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
5-ethoxy-6,7-diphenylpyrrolo[1,2-b]pyridazine
-
IC50: 0.028 mM
5-fluoro-2-(1H-pyrazol-3-yl)-1,3-benzoxazole
-
5-methoxy-6,7-diphenylpyrrolo[1,2-b]pyridazine
5-tert-butyl-N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
6,11-dihydro[1]benzothiopyrano[4,3-b]indole
-
PD146176
6,7-dihydroxy-2-t-butylbenzopyran-4-one
-
weak inhibition of isozyme 15-hLO-2
6,7-dihydroxy-3',4'-methylenedioxyisoflavan
-
-
6,7-dihydroxy-3'-methylisoflavan
-
-
6,7-dihydroxy-3'-methylisoflavanone
-
weak inhibition of isozyme 15-hLO-2
6,7-dihydroxy-4'-methoxyisoflavan
-
-
6,7-dihydroxy-4'-methoxyisoflavanone
-
weak inhibition of isozyme 15-hLO-2
6,7-dihydroxyisoflavones
-
weak inhibition of isozymes 15-hLO-1 and 15-hLO-2
6,7-dimethoxy-2,3-dihydrochromone
-
IC50: 0.137 mM
6,7-diphenylpyrrolo[1,2-a]pyrimidin-8-ol tosylate
-
IC50: 0.015 mM
6,7-diphenylpyrrolo[1,2-b]pyridazin-5-yl trifluoromethanesulfonate
-
IC50: 0.043 mM
6,7-diphenylpyrrolo[1,2-c]pyrimidin-5-ol tosylate
-
IC50: 0.022 mM
6-(2-bromophenyl)-N-cyclohexyl-3-phenylimidazo[2,1-b][1,3]thiazol-5-amine
-
6-(2-nitrophenyl)-3-phenyl-N-(2,4,4-trimethylpentan-2-yl)imidazo[2,1-b][1,3]thiazol-5-amine
-
6-(4-nitrophenyl)-3-phenyl-N-(2,4,4-trimethylpentan-2-yl)imidazo[2,1-b][1,3]thiazol-5-amine
-
6-chloro-2-(1H-pyrazol-3-yl)-1,3-benzoxazole
-
6-chloro-2-(4,5-dichloro-1H-pyrazol-3-yl)-1,3-benzoxazole
-
6-chloro-2-(5-chloro-1H-pyrazol-3-yl)-1,3-benzoxazole
-
6-fluoro-2-(1H-pyrazol-3-yl)-1,3-benzoxazole
-
6-hydroxy-2-pentyl-4H-benzopyran-4-one
-
weak inhibition of isozyme 15-hLO-2
6-oxo-6alpha,12alpha-dehydrodeguelin
-
-
6-[4-([1,1'-biphenyl]-2-yl)piperazin-1-yl]-N-(1,2,3,4-tetrahydronaphthalen-1-yl)hexanamide
-
6-[[5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl]sulfanyl]-1-phenylhexan-1-one
-
low solubility
6alpha,12alpha-12alpha-hydroxyelliptone
-
IC50: 0.062 mM
6alpha,12alpha-dehydrodeguelin
-
IC50: 0.071 mM
7,10,13-eicosatrienoic acid
7,8-dihydroxy-3',4'-dimethoxyisoflavan
-
-
7,8-dihydroxy-3'-methylisoflavone
-
weak inhibition of isozyme 15-hLO-2
7,8-dihydroxy-3'-trifluoromethylisoflavone
-
weak inhibition of isozyme 15-hLO-2
7,8-dihydroxy-4'-methoxyisoflavan
-
-
7,8-dihydroxy-4'-methylisoflavan
-
-
7,8-dihydroxy-4'-methylisoflavone
-
weak inhibition of isozyme 15-hLO-2
7,8-dihydroxyisoflavone
-
weak inhibition of isozyme 15-hLO-2
7-(1,1-dimethylethyl)-2,3-diphenyl-1-indolizinol tosylate
-
IC50: 0.022 mM
7-cyano-2,3-diphenylindolizin-1-yl 2-methoxybenzoate
-
IC50: 0.03 mM
7-cyano-2,3-diphenylindolizin-1-yl 3-methoxybenzoate
-
IC50: 0.028 mM
7-cyano-2,3-diphenylindolizin-1-yl 4-methoxybenzoate
-
IC50: 0.028 mM
7-cyano-2,3-diphenylindolizin-1-yl trifluoromethanesulfonate
7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
-
7-hydroxy-H-benzopyran-4-one derivatives
-
weak inhibition of isozymes 15-hLO-1 and 15-hLO-2
8,11,14-eicosatrienoic acid
8-[4,4-bis(4-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one
-
AAAKKAAK
-
64.2% inhibition at 0.25 mM
alpha-mangostin
-
NSC30552, a natural product, caspase-3 pathway inhibitor, performs selective inhibition of 12-LO
arachidonic acid
-
autoinactivates 15-hLO-1 to a much greater extent than linoleic acid at high substrate concentrations. No autoinactivation at low substrate concentrations
barbigerone
-
IC50: 0.063 mM
benzoic acid
-
48.4% inhibition at 0.015 mM, active site binding structure
bestatin
-
IC50: 0.027 mM
bestatin 7
-
IC50: 0.027 mM
beta-casein
-
11.7% inhibition at 0.025 mM
-
cinnamyl 3,4-dihydroxy-cyanocinnamate
-
CDC
cinnamyl-3,4-dihydroxy-a-cyanocinnamate
-
-
cinnamyl-3,4-dihydroxy-cyanocinnamate
-
conjugated linoleic acids
-
conjugated linoleic acids may function as inhibitors of 15-LO-1 activity in macrophages/in vivo, overview
-
dansyl tryptamine
-
IC50: 0.00373 mM
eicosatetraynoic acid
-
-
epicatechin
-
IC50: 0.06 mM
ethyl 6-([3-[(2-chloro-4-fluorophenyl)carbamoyl]-1H-pyrazole-1-carbonyl]amino)hexanoate
-
GATA-6
-
inhibits non-steroidal anti-inflammatory drugs-induced transcription of 15-LOX-1 in colorectal cancer cells
-
genistin
-
IC50: above 0.167 mM
glucocorticoid
-
inhibits induction in monocytes
-
glucosyringic acid
-
IC50: above 0.167 mM
hesperetin
-
IC50: 0.09 mM
interferon-gamma
-
inhibits induction in monocytes
-
iodoacetamide
-
1.0 mM, 30% inhibition
IRKEIKKN
-
33.9% inhibition at 0.25 mM
isotachioside
-
IC50: above 0.167 mM
jaspaquinol
-
IC50: 0.0003 mM
L-carnosine
-
3.6% inhibition at 0.25 mM
methyl 11,17-dimethoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]yohimban-16-carboxylate
-
methyl 3-(2-[[(4-pentylphenyl)sulfonyl]amino]ethyl)-1H-indole-6-carboxylate
-
-
michellamine B
-
NSC661755, potent but non-selective inhibitor, a natural anti-viral agent
N'-(4-bromophenyl)benzohydrazide
28% inhibition
N'-(4-cyanophenyl)benzohydrazide
9% inhibition
N'-(4-methoxyphenyl)benzohydrazide
73% inhibition
N'-(4-methylphenyl)benzohydrazide
93% inhibition, competitive
N'-(4-nitrophenyl)benzohydrazide
17% inhibition
N'-phenylbenzohydrazide
33% inhibition
N'-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-N-methyl-N-[(3R)-1-phenoxypyrrolidin-3-yl]sulfamide
-
-
N'-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-N-methyl-N-[(3S)-1-phenoxypyrrolidin-3-yl]sulfamide
-
-
N'-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]-N-methyl-N-[(3R)-1-phenoxypyrrolidin-3-yl]sulfamide
-
-
N,2-dihydroxybenzamide
-
IC50: 0.057 mM
N-(2,4-dichlorophenyl)-1H-pyrazole-3-carboxamide
-
N-(2,5-dichlorophenyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-1-(dimethylsulfamoyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-1-(phenylacetyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-1-methyl-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-1-[3-(trifluoromethyl)benzene-1-sulfonyl]-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4,5-bis(trifluoromethyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-(trifluoromethyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-fluoro-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-iodo-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-methyl-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-methyl-5-(trimethylsilyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-nitro-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-phenyl-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-4-[(methanesulfonyl)amino]-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-(difluoromethyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-iodo-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-methyl-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-nitro-1H-pyrazole-3-carboxamide
-
N-(2-chloro-4-fluorophenyl)-5-[(methanesulfonyl)amino]-1H-pyrazole-3-carboxamide
-
N-(2-chlorophenyl)-1H-pyrazole-3-carboxamide
-
N-(2-chlorophenyl)-N-methyl-1H-pyrazole-3-carboxamide
-
N-(3,4-dichlorophenyl)-1H-pyrazole-3-carboxamide
-
N-(4-(5-(naphthalen-1-yl)-1,3,4-oxadiazol)-2-ylthio)but-2-ynyl-thiophene-2-carboxamide
-
-
N-(4-fluorophenyl)-1H-pyrazole-3-carboxamide
-
N-(5-chloro-1,3-thiazol-2-yl)-1H-pyrazole-3-carboxamide
-
N-(5-chloropyridin-2-yl)-1H-pyrazole-3-carboxamide
-
N-(5-fluoropyridin-2-yl)-1H-pyrazole-3-carboxamide
-
N-(7-fluoroquinolin-3-yl)-1H-pyrazole-3-carboxamide
-
N-(isoquinolin-3-yl)-1H-pyrazole-3-carboxamide
-
N-(pyridin-2-yl)-1H-pyrazole-3-carboxamide
-
N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide
-
N-(pyridin-4-yl)-1H-pyrazole-3-carboxamide
-
N-(quinolin-2-yl)-1H-pyrazole-3-carboxamide
-
N-(quinolin-3-yl)-1H-pyrazole-3-carboxamide
-
N-(quinolin-6-yl)-1H-pyrazole-3-carboxamide
-
N-(tert-butyl)-3-phenyl-6-(p-tolyl)imidazo[2,1-b]thiazol-5-amine
-
N-(tert-butyl)-6-(4-chlorophenyl)-3-phenylimidazo[2,1-b]thiazol-5-amine
-
N-(tert-butyl)-6-(4-methoxyphenyl)-3-phenylimidazo[2,1-b]thiazol-5-amine
-
N-(tert-butyl)-6-(4-nitrophenyl)-3-phenylimidazo[2,1-b]thiazol-5-amine
-
N-benzyl-1H-pyrazole-3-carboxamide
-
N-cyclohexyl-6-(2-fluorophenyl)-3-phenylimidazo[2,1-b][1,3]thiazol-5-amine
-
N-cyclohexyl-6-(4-methoxyphenyl)-3-phenylimidazo[2,1-b][1,3]thiazol-5-amine
-
N-cyclohexyl-6-(4-nitrophenyl)-3-phenylimidazo[2,1-b][1,3]thiazol-5-amine
-
N-ethyl-N'-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]-N-[(3R)-1-(1-methyl-1-phenylethyl)pyrrolidin-3-yl]sulfamide
-
-
N-ethyl-N-[(3R)-1-[1-(4-fluorophenyl)ethyl]pyrrolidin-3-yl]-N'-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]sulfamide
-
-
N-phenyl-1H-pyrazole-3-carboxamide
-
N-[(3R)-1-(3,4-dichlorobenzyl)pyrrolidin-3-yl]-N'-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]-N-methylsulfamide
-
-
N-[(5-bromo-8-hydroxy-5,6,7,8-tetrahydroquinolin-7-yl)(thiophen-2-yl)methyl]acetamide
-
N-[2-(1H-indol-3-yl)-1-methylethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(1H-indol-3-yl)ethyl]-2'-methylbiphenyl-4-sulfonamide
-
IC50: 0.00092 mM in the presence of arachidonate, IC50: 0.00046 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-3'-methylbiphenyl-4-sulfonamide
-
IC50: 0.00045 mM in the presence of arachidonate, IC50: 0.00032 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4'-(1-methylethyl)biphenyl-4-sulfonamide
-
IC50: 0.00028 mM in the presence of arachidonate, IC50: 0.00014 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4'-(2-methylpropyl)biphenyl-4-sulfonamide
-
IC50: 0.00091 mM in the presence of arachidonate, IC50: 0.00017 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4'-methoxybiphenyl-4-sulfonamide
-
IC50: 0.0015 mM in the presence of arachidonate, IC50: 0.00109 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4'-methylbiphenyl-4-sulfonamide
-
IC50: 0.00047 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4-methylbenzenesulfonamide
-
IC50: 0.01 mM in the presence of arachidonate, IC50: 0.01 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
IC50: 0.00042 mM in the presence of arachidonate, IC50: 0.00102 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-4-propylbenzenesulfonamide
-
IC50: 0.00313 mM in the presence of arachidonate, IC50: 0.0032 mM in the presence of linoleic acid
N-[2-(1H-indol-3-yl)ethyl]-N-methyl-4-pentylbenzenesulfonamide
-
-
N-[2-(1H-indol-3-yl)ethyl]biphenyl-4-sulfonamide
-
IC50: 0.0034 mM in the presence of arachidonate, IC50: 0.0042 mM in the presence of linoleic acid
N-[2-(2,5-diphenyl-1H-imidazol-4-yl)ethyl]-4-methylbenzenesulfonamide
-
-
N-[2-(2,5-diphenyl-1H-imidazol-4-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(2-cyclopropyl-5-phenyl-1H-imidazol-4-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(2-dibenzo[b,d]furan-2-yl-1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(2-methyl-5-phenyl-1H-imidazol-4-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(2-tert-butyl-5-phenyl-1H-imidazol-4-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(5-fluoro-1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(5-methyl-1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(6-fluoro-1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-(7-methyl-1H-indol-3-yl)ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1-methyl-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-4-(hydrazinocarbonyl)benzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-4-bromobenzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-4-methylbenzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]ethyl]-4-pyridin-4-ylbenzenesulfonamide
-
-
N-[2-[2-(2,5-dimethoxyphenyl)-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(2-methyl-1,3-thiazol-4-yl)-5-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(3-nitrophenyl)-5-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-chlorophenyl)-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-chlorophenyl)-5-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-ethoxyphenyl)-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-methoxyphenyl)-1H-indol-3-yl]ethyl]-4-methylbenzenesulfonamide
-
-
N-[2-[2-(4-methoxyphenyl)-1H-indol-3-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-methoxyphenyl)-1H-indol-3-yl]ethyl]biphenyl-4-sulfonamide
-
-
N-[2-[2-(4-methoxyphenyl)-5-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[2-(4-methylphenyl)-5-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[5-(3-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[5-(4-fluorophenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-4-pentylbenzenesulfonamide
-
-
N-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-4-phenylpiperazine-1-sulfonamide
-
-
N-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-N'-[(3R)-1-phenoxypyrrolidin-3-yl]sulfamide
-
-
N-[2-[5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-4-yl]ethyl]-N'-[(3S)-1-phenoxypyrrolidin-3-yl]sulfamide
-
-
N-[2-[5-(4-methoxyphenyl)-2-thioformyl-1H-imidazol-4-yl]ethyl]-4-pentylpiperazine-1-sulfonamide
-
-
N-[3-(1H-indol-3-yl)propyl]-4-pentylbenzenesulfonamide
-
-
N-[3-(2,5-diphenyl-1H-imidazol-4-yl)propyl]-4-pentylbenzenesulfonamide
-
-
N-[3-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]propyl]-4-pentylbenzenesulfonamide
-
-
N-[3-[2-(1-benzofuran-2-yl)-1H-indol-3-yl]propyl]biphenyl-4-sulfonamide
-
-
N-[4-(1H-indol-3-yl)butyl]-4-pentylbenzenesulfonamide
-
-
N-[4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide
-
N-[4-fluoro-2-(trifluoromethyl)phenyl]-1H-pyrazole-3-carboxamide
-
N1-(2H-1,3-benzodioxol-5-yl)-N-3-(2-chloro-4-fluorophenyl)-1H-pyrazole-1,3-dicarboxamide
-
N1-butyl-N3-(2-chlorophenyl)-N3-methyl-1H-pyrazole-1,3-dicarboxamide
-
N3-(2,2-difluoro-2H-1,3-benzodioxol-4-yl)-N1-hexyl-5-methyl-1H-pyrazole-1,3-dicarboxamide
-
N3-(2-chloro-4-fluorophenyl)-N1-hexyl-4-methyl-1H-pyrazole-1,3-dicarboxamide
-
N3-(2-chloro-4-fluorophenyl)-N1-pentyl-1H-pyrazole-1,3-dicarboxamide
-
N3-(2-chlorophenyl)-N1,N1-dimethyl-1H-pyrazole-1,3-dicarboxamide
-
naringenin
-
IC50: 0.25 mM
neodysidenin
-
natural product from marine sponge Dysidea herbacea from Papua New Guinea, extraction and purification, overview, steady-state inhibition kinetics, competitive mode of inhibition, selective for 12-LO
nor-dihydro-guaiaretic acid
-
-
nordihydroguaiaretic acid
NSC172033
-
a synthetic compound from the NCI library
NSC292213
-
a synthetic compound from the NCI library
NSC617570
-
a synthetic compound from the NCI library
NVPGEIVE
-
65.0% inhibition at 0.25 mM
PCMB
-
0.1 mM, 30% inhibition
PD 146 176
-
IC50: 0.00038 mM
PD-146176
-
IC50: 0.00381 mM
phenyl[(E)-phenyldiazenyl]methanone
87% inhibition
PKYPVEPFTE
-
74.6% inhibition at 0.25 mM
propyl gallate
-
96% inhibition at 0.05 mM
RINKKIEK
-
68.1% inhibition at 0.25 mM, a beta-casein-derived octapeptide
RINKKIPK
-
57.7% inhibition at 0.25 mM
sarcolobin
-
IC50: 0.06 mM
SITRINKK
-
65.3% inhibition at 0.25 mM
squalene
-
IC50 is 0.0012 mM
tachioside
-
IC50: above 0.167 mM
tephrosin
-
IC50: 0.064 mM