Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.11.1.28 - lipoyl-dependent peroxiredoxin

for references in articles please use BRENDA:EC1.11.1.28
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.11 Acting on a peroxide as acceptor
             1.11.1 Peroxidases
                1.11.1.28 lipoyl-dependent peroxiredoxin
IUBMB Comments
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins. They can be divided into three classes: typical 2-Cys, atypical 2-Cys and 1-Cys peroxiredoxins . The peroxidase reaction comprises two steps centred around a redox-active cysteine called the peroxidatic cysteine. All three peroxiredoxin classes have the first step in common, in which the peroxidatic cysteine attacks the peroxide substrate and is oxidized to S-hydroxycysteine (a sulfenic acid) (see {single/111115a::mechanism}). The second step of the peroxidase reaction, the regeneration of cysteine from S-hydroxycysteine, distinguishes the three peroxiredoxin classes. For typical 2-Cys Prxs, in the second step, the peroxidatic S-hydroxycysteine from one subunit is attacked by the 'resolving' cysteine located in the C-terminus of the second subunit, to form an intersubunit disulfide bond, which is then reduced by one of several cell-specific thiol-containing reductants completing the catalytic cycle. In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its resolving cysteine are in the same polypeptide, so their reaction forms an intrachain disulfide bond. The 1-Cys Prxs conserve only the peroxidatic cysteine, so its regeneration involves direct interaction with a reductant molecule. Two types of lipoyl-dependent peroxiredoxins have been reported from bacteria. One type is the AhpC/AhpD system, originally described from Mycobacterium tuberculosis. In that system, AhpC catalyses reduction of the substrate, resulting in an intramolecular disulfide. AhpD then forms an intermolecular disulfide crosslink with AhpC, reducing it back to active state. AhpD is reduced in turn by lipoylated proteins. The second type, which has been characterized in Xylella fastidiosa, consists of only one type of subunit, which interacts directly with lipoylated proteins.
Specify your search results
Select one or more organisms in this record: ?
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota
Reaction Schemes
a [lipoyl-carrier protein]-N6-[(R)-dihydrolipoyl]-L-lysine
+
=
a [lipoyl-carrier protein]-N6-lipoyl-L-lysine
+
+
Synonyms
organic hydroperoxide resistance, organic hydroperoxide resistance protein, peroxiredoxin ahpc, ahpcd, mfohr, more
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
a [lipoyl-carrier protein]-N6-[(R)-dihydrolipoyl]-L-lysine + ROOH = a [lipoyl-carrier protein]-N6-lipoyl-L-lysine + H2O + ROH
show the reaction diagram
-
-
-
-
Select items on the left to see more content.