Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-Deoxy-D-glucose + D-fructose
?
D-Galactose + D-fructose
?
-
Substrates: at 8% of the activity relative to D-glucose
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-glucitol
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
D-glucose + D-fructose
D-gluconolactone + D-glucitol
D-glucose + D-fructose
sorbitol + D-glucono-1,5-lactone
-
Substrates: -
Products: -
?
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
D-glucose + D-xylose
D-gluconolactone + D-xylitol
Substrates: -
Products: -
?
D-Glucose + D-xylulose
?
-
Substrates: at 7% of the activity relative to fructose
Products: -
?
D-Glucose + dihydroxyacetone
?
-
Substrates: at 6% of the activity relative to fructose
Products: -
?
D-Glucose + L-sorbose
?
-
Substrates: at 0.5% of the activity relative to fructose
Products: -
?
D-Mannose + D-fructose
?
-
Substrates: at 12% of the activity relative to D-glucose
Products: -
?
D-Xylose + D-fructose
?
-
Substrates: at 8% of the activity relative to D-glucose
Products: -
?
DL-Glyceraldehyde + D-fructose
?
-
Substrates: at 1.5% of the activity relative to D-glucose
Products: -
?
L-Arabinose + D-fructose
?
-
Substrates: at 3% of the activity relative to D-glucose
Products: -
?
additional information
?
-
2-Deoxy-D-glucose + D-fructose
?
-
Substrates: at 16% of the activity relative to D-glucose
Products: -
?
2-Deoxy-D-glucose + D-fructose
?
-
Substrates: at 6% of the activity relative to D-glucose
Products: -
?
D-Glucose + D-fructose
?
-
Substrates: enzyme is responsible for sorbitol production
Products: -
?
D-Glucose + D-fructose
?
-
Substrates: the enzyme produces the solute sorbitol by reduction of fructose, coupled with the oxidation of glucose to gluconolactone and thereby protects the bacterium against osmotic shock in sugar-rich environment
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-glucitol
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-glucitol
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
10900, 10901, 10903, 10904, 10906, 10907, 10908, 10909, 10910, 10911, 10912, 10913, 10914, 10915, 711819, 725638, 725640 Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: r
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: a variable pH from 7.8 to 6.4 and a constant temperature of about 47°C are the best conditions for achieving good conversion yields and productivities
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: at pH 6.4 and 39°C when 700 mM lactose/350 mM fructose pair substrate is used, the maximum possible conversion yield is attained after 24 h of operation
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: from pineapple juice, at optimal conditions a maximum of 80% (w/v) sugar conversion is obtained
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: a variable pH from 7.8 to 6.4 and a constant temperature of about 47°C are the best conditions for achieving good conversion yields and productivities
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: at pH 6.4 and 39°C when 700 mM lactose/350 mM fructose pair substrate is used, the maximum possible conversion yield is attained after 24 h of operation
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: pineapple juice sugars, the enzyme is efficient in converting juice sugars of fruits juices having higher natural pH
Products: -
?
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: pineapple juice sugars, the enzyme is efficient in converting juice sugars of fruits juices having higher natural pH
Products: -
?
additional information
?
-
-
Substrates: in periplasm the enzyme functions to produce sorbitol for osmoprotection
Products: -
?
additional information
?
-
-
Substrates: decreasing enzyme/substrate affnities are observed when D-fructose is in the mixture with D-glucose, D-maltose, D-galactose, and lactose
Products: -
?
additional information
?
-
-
Substrates: decreasing enzyme/substrate affnities are observed when D-fructose is in the mixture with D-glucose, D-maltose, D-galactose, and lactose
Products: -
?
additional information
?
-
-
Substrates: glucose-fructose oxidoreductase oxidizes not only glucose but also seven other aldose sugars to produce the corresponding organic acids; in particular, lactose is oxidized to lactobionic acid
Products: -
?
additional information
?
-
-
Substrates: glucose-fructose oxidoreductase oxidizes not only glucose but also seven other aldose sugars to produce the corresponding organic acids; in particular, lactose is oxidized to lactobionic acid
Products: -
?
additional information
?
-
-
Substrates: glucose-fructose oxidoreductase oxidizes not only glucose but also seven other aldose sugars to produce the corresponding organic acids; in particular, lactose is oxidized to lactobionic acid
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D-glucose + D-fructose
D-glucono-1,5-lactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
D-glucose + D-fructose
D-gluconolactone + D-glucitol
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
additional information
?
-
D-Glucose + D-fructose
?
-
Substrates: enzyme is responsible for sorbitol production
Products: -
?
D-Glucose + D-fructose
?
-
Substrates: the enzyme produces the solute sorbitol by reduction of fructose, coupled with the oxidation of glucose to gluconolactone and thereby protects the bacterium against osmotic shock in sugar-rich environment
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: a variable pH from 7.8 to 6.4 and a constant temperature of about 47°C are the best conditions for achieving good conversion yields and productivities
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: at pH 6.4 and 39°C when 700 mM lactose/350 mM fructose pair substrate is used, the maximum possible conversion yield is attained after 24 h of operation
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: from pineapple juice, at optimal conditions a maximum of 80% (w/v) sugar conversion is obtained
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: a variable pH from 7.8 to 6.4 and a constant temperature of about 47°C are the best conditions for achieving good conversion yields and productivities
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: at pH 6.4 and 39°C when 700 mM lactose/350 mM fructose pair substrate is used, the maximum possible conversion yield is attained after 24 h of operation
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose
D-gluconolactone + D-glucitol
-
Substrates: -
Products: -
?
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: pineapple juice sugars, the enzyme is efficient in converting juice sugars of fruits juices having higher natural pH
Products: -
?
D-glucose + D-fructose + H2O
D-glucono-1,5-lactone + D-sorbitol
-
Substrates: pineapple juice sugars, the enzyme is efficient in converting juice sugars of fruits juices having higher natural pH
Products: -
?
additional information
?
-
-
Substrates: in periplasm the enzyme functions to produce sorbitol for osmoprotection
Products: -
?
additional information
?
-
-
Substrates: decreasing enzyme/substrate affnities are observed when D-fructose is in the mixture with D-glucose, D-maltose, D-galactose, and lactose
Products: -
?
additional information
?
-
-
Substrates: decreasing enzyme/substrate affnities are observed when D-fructose is in the mixture with D-glucose, D-maltose, D-galactose, and lactose
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Zachariou, M.; Scopes, R.K.
Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production
J. Bacteriol.
167
863-869
1986
Zymomonas mobilis
brenda
Kanagasundaram, V.; Scopes, R.K.
Cloning, sequence analysis and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis
J. Bacteriol.
174
1439-1447
1992
Zymomonas mobilis
brenda
Hardman, M.J.; Scopes, R.K.
The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis
Eur. J. Biochem.
173
203-209
1988
Zymomonas mobilis
brenda
Furlinger, M.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B.
A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis
Eur. J. Biochem.
251
955-963
1998
Zymomonas mobilis
brenda
Hardman, M.J.; Tsao, M.; Scopes, R.K.
Changes in the fluorescence of bound nucleotide during the reaction catalysed by glucose-fructose oxidoreductase from Zymomonas mobilis
Eur. J. Biochem.
205
715-720
1992
Zymomonas mobilis
brenda
Wiegert, T.; Sahm, H.; Sprenger, G.A.
The substitution of a single amino acid residue (Ser-116->Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity
J. Biol. Chem.
272
13126-13133
1997
Zymomonas mobilis (Q07982), Zymomonas mobilis
brenda
Loos, H.; Sahm, H.L.; Sprenger, G.A.
Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form
FEMS Microbiol. Lett.
107
293-298
1993
Zymomonas mobilis
brenda
Wiegert, T.; Sahm, H.; Sprenger, G.A.
Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis
Arch. Microbiol.
166
32-41
1996
Zymomonas mobilis
brenda
Furlinger, M.; Nidetzky, B.; Scopes, R.K.; Haltrich, D.; Kulbe, K.D.
Inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis during its catalytic action
Ann. N. Y. Acad. Sci.
799
752-756
1996
Zymomonas mobilis
-
brenda
Furlinger, M.; Satory, M.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B.
Control of the association state of tetrameric glucose-fructose oxidoreductase from Zymomonas mobilis as the rationale for stabilization of the enzyme in biochemical reactors
J. Biochem.
124
280-286
1998
Zymomonas mobilis
brenda
Sprenger, G.A.
Die periplasmatische Glukose-Fruktose-Oxidoreduktase aus Zymomonas mobilis
BIOspektrum
3
52-53
1997
Zymomonas mobilis
-
brenda
Nidetzky, B.; Furlinger, M.; Gollhofer, D.; Haug, I.; Haltrich, D.; Kulbe, K.D.
Simultaneous enzymatic synthesis of gluconic acid and sorbitol. Production, purification, and application of glucose-fructose oxidoreductase and gluconolactonase
Appl. Biochem. Biotechnol.
63-65
173-188
1997
Zymomonas mobilis
brenda
Gollhofer, D.; Nidetzky, B.; Fuerlinger, M.; Kulbe, K.D.
Efficient protection of glucose-fructose oxidoreductase from Zymomonas mobilis against irreversible inactivation during its catalytic action
Enzyme Microb. Technol.
17
235-240
1995
Zymomonas mobilis
-
brenda
Wiegert, T.; Sahm, H.; Sprenger, G.A.
Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein
Eur. J. Biochem.
224
107-112
1997
Zymomonas mobilis
brenda
Kingston, R.L.; Scopes, R.K.; Baker, E.N.
The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP
Structure
4
1413-1428
1996
Zymomonas mobilis
brenda
Ermler, L.H.; Sprenger, G.A.; Sahm, H.
Crystallization and preliminary X-ray analysis of glucose-fructose oxidoreductase from Zymomonas mobilis
Protein Sci.
3
2447-2449
1994
Zymomonas mobilis
brenda
Nurizzo, D.; Halbig, D.; Sprenger, G.A.; Baker, E.N.
Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands
Biochemistry
40
13857-13867
2001
Zymomonas mobilis
brenda
Erzinger, G.S.; Moura da Silveira, M.; Castilho Lopes da Costa, J.P.; Vitolo, M.; Jonas, R.
Activity of glucose-fructose oxidoreductase in fresh and permeabilised cells of Zymomonas mobilis grown in different glucose concentrations
Braz. J. Microbiol.
34
329-333
2003
Zymomonas mobilis
-
brenda
Halbig, D.; Wiegert, T.; Blaudeck, N.; Freudl, R.; Sprenger, G.A.
The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding
Eur. J. Biochem.
263
543-551
1999
Zymomonas mobilis
brenda
Lott, J.S.; Halbig, D.; Baker, H.M.; Hardman, M.J.; Sprenger, G.A.; Baker, E.N.
Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation
J. Mol. Biol.
304
575-584
2000
Zymomonas mobilis (Q07982), Zymomonas mobilis
brenda
Erzinger, G.S.; Vitolo, M.
Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid
Appl. Biochem. Biotechnol.
129-132
787-794
2006
Zymomonas mobilis
brenda
Arora, M.B.; Hestekin, J.A.; Snyder, S.W.; Martin, E.J.; St. Lin, Y.J.; Donnelly, M.I.; Millard, C.S.
The separative bioreactor: a continuous separation process for the simultaneous production and direct capture of organic acids
Sep. Sci. Technol.
42
2519-2538
2007
Escherichia coli
brenda
Zhang, X.; Chen, G.; Liu, W.
Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis
FEMS Microbiol. Lett.
293
214-219
2009
Zymomonas mobilis (Q07982), Zymomonas mobilis
brenda
Peretti, F.; Silveira, M.; Zeni, M.
Use of electrodialysis technique for the separation of lactobionic acid produced by Zymomonas mobilis
Desalination
245
626-630
2009
Zymomonas mobilis, Zymomonas mobilis ATCC 29191
-
brenda
Aziz, M.; Yusof, Y.; Kulbe, K.
Production and application of glucose-fructose oxidoreductase for conversion of pineapple juice sugars
Afr. J. Microbiol. Res.
5
5046-5052
2011
Zymomonas mobilis, Zymomonas mobilis DSM 473
-
brenda
Malvessi, E.; Carra, S.; da Silveira, M.; Ayub, M.
Effect of substrate concentration, pH, and temperature on the activity of the complex glucose-fructose oxidoreductase/glucono-delta-lactonase present in calcium alginate-immobilized Zymomonas mobilis cells
Biochem. Eng. J.
51
1-6
2010
Zymomonas mobilis, Zymomonas mobilis ATCC 29191
-
brenda
Aziz, M.G.; Michlmayr, H.; Kulbe, K.D.; Del Hierro, A.M.
Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase
Enzyme Microb. Technol.
48
85-91
2011
Zymomonas mobilis
brenda
Pedruzzi, I.; da Silva, E.A.; Rodrigues, A.E.
Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study
Enzyme Microb. Technol.
49
183-191
2011
Zymomonas mobilis, Zymomonas mobilis ATCC 29191
brenda
Severo, J.B.; Pinto, J.C.; Ferraz, H.C.; Alves, T.L.
Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis
J. Ind. Microbiol. Biotechnol.
38
1575-1585
2011
Zymomonas mobilis, Zymomonas mobilis ATCC 31821
brenda
Malvessi, E.; Carra, S.; Pasquali, F.C.; Kern, D.B.; da Silveira, M.M.; Ayub, M.A.
Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis
J. Ind. Microbiol. Biotechnol.
40
1-10
2013
Zymomonas mobilis, Zymomonas mobilis ATCC 29191
brenda
Goderska, K.; Juzwa, W.; Szwengiel, A.; Czarnecki, Z.
Lactobionic acid production by glucose-fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli
Biotechnol. Lett.
37
2047-2053
2015
Zymomonas mobilis subsp. mobilis, Zymomonas mobilis subsp. mobilis CCM 2770, Zymomonas mobilis subsp. mobilis CCM 3883
brenda
Guevara-Cruz, M.; Lai, C.Q.; Richardson, K.; Parnell, L.D.; Lee, Y.C.; Tovar, A.R.; Ordovas, J.M.; Torres, N.
Effect of a GFOD2 variant on responses in total and LDL cholesterol in Mexican subjects with hypercholesterolemia after soy protein and soluble fiber supplementation
Gene
532
211-215
2013
Homo sapiens
brenda
Carra, S.; Rodrigues, D.C.; Beraldo, N.M.C.; Folle, A.B.; Delagustin, M.G.; de Souza, B.C.; Reginatto, C.; Polidoro, T.A.; da Silveira, M.M.; Bassani, V.L.; Malvessi, E.
High lactobionic acid production by immobilized Zymomonas mobilis cells a great step for large-scale process
Bioprocess Biosyst. Eng.
43
1265-1276
2020
Zymomonas mobilis (Q07982), Zymomonas mobilis, Zymomonas mobilis ATCC 29191 (Q07982)
brenda