Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
metabolism
-
pathways for the synthesis of 2,3-butanediol in bacteria, overview
evolution

-
phylogenetic analysis
evolution
-
phylogenetic analysis
evolution
the enzyme belongs to the shortchain dehydrogenase/reductase superfamily
evolution
-
the enzyme belongs to the short chain dehydrogenase/reductase family
evolution
-
enzyme BDH belongs to the SDR family, of enzymes
evolution
-
the enzyme belongs to the short chain dehydrogenase/reductase family
-
evolution
-
the enzyme belongs to the shortchain dehydrogenase/reductase superfamily
-
malfunction

-
the budC knockout strain produces only the D-2,3-butanediol isomer with high yield and productivity. Deletion of budC gene causes a slight decrease (about 5-10%) in cell growth
malfunction
-
the budC knockout strain produces only the D-2,3-butanediol isomer with high yield and productivity. Deletion of budC gene causes a slight decrease (about 5-10%) in cell growth
-
physiological function

-
deletion of BDH1 results in an accumulation of acetoin and a diminution of 2,3-butanediol in two Saccharomyces cerevisiae strains under two different growth conditions
physiological function
2,3-butanediol dehydrogenase (BDH) catalyzes the interconversion between acetoin and 2,3-butanediol and is a key enzyme for 2,3-butanediol production
physiological function
-
budC encodes the major meso-2,3-butanediol dehydrogenase catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in Bacillus licheniformis
physiological function
-
2,3-butanediol dehydrogenase (BDH) catalyzes the interconversion between acetoin and 2,3-butanediol and is a key enzyme for 2,3-butanediol production
-
physiological function
-
budC encodes the major meso-2,3-butanediol dehydrogenase catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in Bacillus licheniformis
-
additional information

the enzyme possesses two conserved sequences including the coenzyme binding motif (GxxxGxG) and the active-site motif (YxxxK)
additional information
-
the enzyme possesses two conserved sequences including the coenzyme binding motif (GxxxGxG) and the active-site motif (YxxxK)
additional information
-
the enzyme possesses two conserved sequences including the coenzyme binding motif (GxxxGxG) and the active-site motif (YxxxK)
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3S)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
(2S,3S)-2,3-butanediol + NAD+
(3S)-acetoin + NADH
-
(2S,3S)-2,3-butanediol is a poor substrate
-
-
?
(2S,3S)-2,3-butanediol + NAD+
(3S)-acetoin + NADH + H+
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
(3S)-acetoin + NADH + H+
(2S,3S)-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
(R)-acetoin + NADPH + H+
meso-2,3-butanediol + NADP+
(S)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
1,2-pentanediol + NADH + H+
?
1,2-propandiol + NADH + H+
?
low activity
-
-
?
2 (R,S)-acetoin + 2 NADPH + 2 H+
(2S,3S)-2,3-butanediol + meso-2,3-butanediol + NADP+
-
-
Ara1p is selective toward the acetoin carbonyl group, leading to an S-alcohol
-
r
2 acetoin + 2 NADH + 2 H+
(2S,3S)-2,3-butanediol + meso-2,3-butanediol + 2 NAD+
-
racemic mixture of (3S/3R)-acetoin
-
-
r
4-methyl-2-pentanone + NADH + H+
4-methyl-2-pentanol + NAD+
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
meso-2,3-butanediol + NAD+
diacetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
?
glycerol + NADH + H+
?
low activity
-
-
?
L-acetoin + NADH
L-2,3-butanediol + NAD+
-
-
-
?
meso-2,3-butanediol + NAD+
(3R)-acetoin + NADH + H+
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
acetoin + NADH
-
-
-
-
?
meso-2,3-butanediol + NAD+
acetoin + NADH + H+
-
-
-
-
?
meso-2,3-butanediol + NADP+
(R)-acetoin + NADPH + H+
very low activity
-
-
r
additional information
?
-
(2R,3S)-butane-2,3-diol + NAD+

(3R)-acetoin + NADH + H+
AEF50077
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
AEF50077
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+

acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(2S,3S)-2,3-butanediol + NAD+

(3S)-acetoin + NADH + H+
low activity
-
-
r
(2S,3S)-2,3-butanediol + NAD+
(3S)-acetoin + NADH + H+
low activity
-
-
r
(3R)-acetoin + NADH + H+

meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
low activity in vivo
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
r
(3S)-acetoin + NADH + H+

(2S,3S)-2,3-butanediol + NAD+
at pH 9.0
-
-
r
(3S)-acetoin + NADH + H+
(2S,3S)-2,3-butanediol + NAD+
at pH 9.0
-
-
r
(R)-acetoin + NADH + H+

meso-2,3-butanediol + NAD+
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
preferred reaction direction
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
preferred reaction direction
-
-
r
(R)-acetoin + NADPH + H+

meso-2,3-butanediol + NADP+
very low activity
-
-
r
(R)-acetoin + NADPH + H+
meso-2,3-butanediol + NADP+
very low activity
-
-
r
1,2-pentanediol + NADH + H+

?
low activity
-
-
?
1,2-pentanediol + NADH + H+
?
low activity
-
-
?
4-methyl-2-pentanone + NADH + H+

4-methyl-2-pentanol + NAD+
-
low activity
-
-
r
4-methyl-2-pentanone + NADH + H+
4-methyl-2-pentanol + NAD+
-
low activity
-
-
r
acetoin + NADH + H+

(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+

meso-2,3-butanediol + NAD+
racemic mixture of (3S/3R)-acetoin
-
-
r
acetoin + NADH + H+
meso-2,3-butanediol + NAD+
racemic mixture of (3S/3R)-acetoin
-
-
r
meso-2,3-butanediol + NAD+

(R)-acetoin + NADH + H+
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
-
the (S)-specific ADH-9 produces (R)-acetoin by an oxidative route starting from meso-2,3-butanediol
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
-
enantioselective enzymatic synthesis of the alpha-hydroxy ketone(R)-acetoin from meso-2,3-butanediol
-
-
r
additional information

?
-
stereoisomeric composition analysis of 2,3-butanediol produced by strain 10-1-A using gas chromatography. Strain 10-1-A produces a mixture of (2R,3R)-2,3-butanediol and meso-2,3-butanediol with a ratio of nearly 1:1. As (3R)-acetoin is the major source of (2R,3R)-2,3-butanediol and meso-2,3-butanediol, a meso-butanediol dehydrogenase and a (2R,3R)-2,3-butanediol dehydrogenase are co-present in strain 10-1-A
-
-
-
additional information
?
-
stereoisomeric composition analysis of 2,3-butanediol produced by strain 10-1-A using gas chromatography. Strain 10-1-A produces a mixture of (2R,3R)-2,3-butanediol and meso-2,3-butanediol with a ratio of nearly 1:1. As (3R)-acetoin is the major source of (2R,3R)-2,3-butanediol and meso-2,3-butanediol, a meso-butanediol dehydrogenase and a (2R,3R)-2,3-butanediol dehydrogenase are co-present in strain 10-1-A
-
-
-
additional information
?
-
meso-2,3-butanediol dehydrogenase (BDH) catalyzes the redox reaction between (R)-acetoin and meso-2,3-butanediol
-
-
-
additional information
?
-
-
NMR identification and quantification of reaction products. Meso-2,3-butanediol is the major form (over 95% of the 2,3-butanediol pool, depending on oxygen availability) produced in fermentations using a strain that overexpresses ALS/ALDC of Lactobacillus lactis and BDH of Corynebacterium glutamicum, i.e., strain DELTAaceEDELTApqoDELTAldhA(pEKEx2als,aldB,butACg)
-
-
-
additional information
?
-
the enzyme is also active with diacetyl and NADH
-
-
-
additional information
?
-
the enzyme is also active with diacetyl and NADH
-
-
-
additional information
?
-
-
the enzyme is highly stereospecific, and shows no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol, and 2S,3S-2,3-butanediol
-
-
-
additional information
?
-
-
the enzyme is highly stereospecific, and shows no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol, and 2S,3S-2,3-butanediol
-
-
-
additional information
?
-
(2R,3R)-2,3-butanediol is no substrate for the enzyme
-
-
-
additional information
?
-
-
(2R,3R)-2,3-butanediol is no substrate for the enzyme
-
-
-
additional information
?
-
(2R,3R)-2,3-butanediol is no substrate for the enzyme
-
-
-
additional information
?
-
-
(2R,3R)-2,3-butanediol is no substrate for the enzyme
-
-
-
additional information
?
-
-
reaction component identification and quantification by GC-MS. No or very poor activity with isopropanol 2-methyl-1-butanol, 2-methyl-2-butanol, 2,5-hexanediol, 1,4-butanediol
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3S)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
meso-2,3-butanediol + NAD+
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
additional information
?
-
(2R,3S)-butane-2,3-diol + NAD+

(3R)-acetoin + NADH + H+
AEF50077
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
AEF50077
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+

acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(2R,3S)-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
(3R)-acetoin + NADH + H+

meso-2,3-butanediol + NAD+
-
low activity in vivo
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(3R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+

meso-2,3-butanediol + NAD+
A0A1D8FJM6
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
A0A0H3FZT7
-
-
-
r
(R)-acetoin + NADH + H+
meso-2,3-butanediol + NAD+
A0A0H3FZT7
-
-
-
r
acetoin + NADH + H+

(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
r
acetoin + NADH + H+

meso-2,3-butanediol + NAD+
X5F726
racemic mixture of (3S/3R)-acetoin
-
-
r
acetoin + NADH + H+
meso-2,3-butanediol + NAD+
X5F726
racemic mixture of (3S/3R)-acetoin
-
-
r
meso-2,3-butanediol + NAD+

(R)-acetoin + NADH + H+
A0A1D8FJM6
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
A0A0H3FZT7
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
A0A0H3FZT7
-
-
-
r
meso-2,3-butanediol + NAD+
(R)-acetoin + NADH + H+
-
the (S)-specific ADH-9 produces (R)-acetoin by an oxidative route starting from meso-2,3-butanediol
-
-
r
additional information

?
-
X5F726
stereoisomeric composition analysis of 2,3-butanediol produced by strain 10-1-A using gas chromatography. Strain 10-1-A produces a mixture of (2R,3R)-2,3-butanediol and meso-2,3-butanediol with a ratio of nearly 1:1. As (3R)-acetoin is the major source of (2R,3R)-2,3-butanediol and meso-2,3-butanediol, a meso-butanediol dehydrogenase and a (2R,3R)-2,3-butanediol dehydrogenase are co-present in strain 10-1-A
-
-
-
additional information
?
-
X5F726
stereoisomeric composition analysis of 2,3-butanediol produced by strain 10-1-A using gas chromatography. Strain 10-1-A produces a mixture of (2R,3R)-2,3-butanediol and meso-2,3-butanediol with a ratio of nearly 1:1. As (3R)-acetoin is the major source of (2R,3R)-2,3-butanediol and meso-2,3-butanediol, a meso-butanediol dehydrogenase and a (2R,3R)-2,3-butanediol dehydrogenase are co-present in strain 10-1-A
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.3
-
recombinant Escherichia coli strain BL21(DE3) expressing wild-type BDH, pH 7.0, 30°C
1.1
-
mutant N146F, substrate (2S,3S)-2,3-butanediol, pH 8.0, 37°C
2.17
AEF50077
crude extracet of Escherichia coli cells expressing the enzyme from plasmid pET-mbdh-nox-vgb, pH 8.0, 22°C
2.37
purified recombinant enzyme, pH 7.6, 37°C, substrates meso-2,3-butanediol and NADP+
2.47
AEF50077
crude extracet of Escherichia coli cells expressing the enzyme from plasmid pET-mbdh-nox, pH 8.0, 22°C
3.1
-
mutant Q140I/N146F, substrate (2,3S)-2,3-butanediol, pH 8.0, 37°C
3.32
AEF50077
crude extracet of Escherichia coli cells expressing the enzyme from plasmid pET-mbdh, pH 8.0, 22°C
4.5
-
mutant Q140I/N146F, substrate meso-2,3-butanediol, pH 8.0, 37°C
5.5
-
wild-type, substrate (2S,3S)-2,3-butanediol, pH 8.0, 37°C
7.14
-
crude recombinant enzyme, pH 7.0, 37°C
19.4
-
mutant N146F, substrate meso-2,3-butanediol, pH 8.0, 37°C
21
-
purified reconstituted, recombinant enzyme, reduction of 4-methyl-2-pentanone, pH 8.0, 35°C
66
-
purified reconstituted, recombinant enzyme, oxidation of meso-2,3-butanediol, pH 8.0, 35°C
119.55
purified recombinant enzyme, pH 7.6, 37°C, substrates meso-2,3-butanediol and NAD+
177
-
wild-type, substrate meso-2,3-butanediol, pH 8.0, 37°C
218
-
purified reconstituted, recombinant enzyme, reduction of acetoin, pH 8.0, 35°C
461.67
purified recombinant enzyme, pH 7.6, 37°C, substrates acetoin and NADH
2.9

-
mutant Q140I/N146F/W190H, substrate (2S,3S)-2,3-butanediol, pH 8.0, 37°C
2.9
purified recombinant enzyme, pH 7.6, 37°C, substrates acetoin and NADPH
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
ADH-9 gene is identified from a biodiversity library, recombinant expression in Escherichia coli strain BL21/(DE3)
-
expression in Escherichia coli
-
gene bdh, DNA and amino acid sequence determination and analysis, sequence comparisons and phylogenetic analysis, functional recombinant expression in Escherichia coli
gene bdh1, phylogenetic analysis, expression in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC? expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively, disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion
-
gene budC , recombinant expression in Escherichia coli strain BL21(DE3)
gene budC, expression in Escherichia coli strain BL21(DE3) pLys
-
gene budC, phylogenetic tree, functional recombinant expression in Bacillus subtilis strain 168
-
gene budC, recombinant expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3)
gene budC, sequence comparisons, expression in Escherichia coli strain BL21(DE3), subcloning in Escherichia coli strain DH5alpha
gene butACg, subcloning in Escherichia coli strain DH5alpha, recombinant expression in Escherichia coli strain BL21(DE3), coexpression with the genes encoding ALS and ALDC of Lactobacillus lactis strain MG1363
-
gene mbdh, functional coexpression of Serratia sp. meso-2,3-butanediol dehydrogenase, Lactobacillus brevis NADH oxidase and Vitreoscilla sp. hemoglobin in Escherichia coli strain BL21(DE3)/pET-mbdh-nox-vgb, construction of plasmids pET-mbdh, pET-mbdh-nox, and pET-mbdh-nox-vgb, method optimization
AEF50077
phylogenetic analysis, enzyme expression in Escherichia coli strains MG1655(DE3) and YYC202(DE3)
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D194G
site-directed mutagenesis, the mutant binds the substrate but is catalytically almost inactive. The mutant is inactive with (2S,3S)-butanediol, meso-butanediol and (2R,3R)-butanediol. D194G enzyme mutant shows a similar secondary structure compared to Enterobacter aerogenes BDH. While the mutant is highly susceptible to protease digestion compared to the wild-type enzyme. Homology modeling of the mutant enzyme, with meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae, PDB ID 1GEG, as a template, reveals that Gly194 seems to lose the hydrogen bond interactions with the surrounding residues (Gly206, Gly207 and Thr209), resulting in a putative conformational changes of mutant D194G which might be responsible for the loss of activity
moe
-
construction and engineering of Corynebacterium glutamicum strain DELTAaceEDELTApqoDELTAldhA(pEKEx2-als,aldB,butACg). Chromosomal inactivation of the putative BDH gene butACg (cg2958) in strain DELTAaceEDELTApqoDELTAldhA. BDH activity is nearly abolished upon inactivation of butACg indicating that Corynebacterium glutamicum expresses a single BDH under the experimental conditions examined. BDH activity increases 3fold in strain DELTAaceEDELTApqoDELTAldhA(pEKEx2-als,aldB,butACg) compared to the respective control. The inactivation of butACg gene decreases the BDH activity 75fold for the DELTAaceEDELTApqoDELTAldhADELTAbutACg(pEKEx2) strain compared to strain DELTAaceEDELTApqoDELTAldhA(pEKEx2). The major form of 2,3-butanediol is meso-2,3-butandediol, and the ratio meso-2,3-BD/optically active 2,3-BD is 95:5, the main side products are glycerol, ethanol, and acetoin
N146F
-
11% of wild-type specific activity
Q140I
-
trace activity below 0.1 U/mg
Q140I/N146F
-
poor activity
Q140I/N146F/W190H
-
trace activity below 0.1 U/mg with substrate meso-butanediol, 2.9 U/mg with substrate (2S,3S)-2,3-butanediol
Q140I
-
mutation mimicking the corresponding residue in (S,S)-butanediol dehydrogenase. No activity with substrates meso-butanediol or (S,S)-butanediol
Q140I/N146F
-
mutation mimicking the corresponding residues in (S,S)-butanediol dehydrogenase. Poor activity with substrates meso-butanediol or (S,S)-butanediol
additional information

-
generation of a mutant strain WX-02 DELTAbudC of Bacillus licheniformis with depleted budC gene that produces high yields of the D-2,3-butanediol isomer with high optimal purity
additional information
-
generation of a mutant strain WX-02 DELTAbudC of Bacillus licheniformis with depleted budC gene that produces high yields of the D-2,3-butanediol isomer with high optimal purity
-
additional information
-
expression of gene bdh1 from Saccharomyces cervisiae in Escherichia coi strain YYC202(DE3) ldhA-/- ilvC-/- expressing ilvBN from Escherichia coli and aldB from Lactobacillus lactis, encoding acetolactate synthase and acetolactate decarboxylase activities, respectively. Disruption of the lactate biosynthesis pathway in the strain increases pyruvate precursor availability to this strain, increased availability of NADH for acetoin reduction to meso-2,3-butanediol is the most important consequence of ldhA deletion. Optimization of 2,3-butanediol production in Escherichia coli, overview
additional information
-
Bacillus subtilis is engineered to produce chiral pure meso-2,3-BD. D-2,3-butanediol production is abolished by deleting D-2,3-butanediol dehydrogenase (EC 1.1.1.4) coding gene bdhA, and acoA gene is knocked out to prevent the degradation of acetoin, the immediate precursor of 2,3-butanediol. Next, both pta and ldh gene are deleted to decrease the accumulation of the byproducts, acetate and L-lactate. The meso-2,3-butanediol dehydrogenase coding gene from Klebsiella pneumoniae CICC10011 is introduced, as well as alsSD overexpressed in the tetra mutant (DELTAacoADELTAbdhADELTAptaDELTAldh) to achieve the efficient production of chiral meso-2,3-butanediol. Finally, the pool of NADH availability is further increased to facilitate the conversion of meso-2,3-butanediol from acetoin by overexpressing the udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-butanediol with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct acetoin is no more than 1.1 g/L. Method optimization. The titer of meso-2,3-butanediol is almost unchanged at 37°C, 42°C, and 46°C, while the meso-2,3-butanediol productivity increases when the cultivation temperature is increased from 37°C to 46°C. The titer and productivity at 50°C decreases by 28.6% and 36.3% compared to those at 37°C
additional information
-
Bacillus subtilis is engineered to produce chiral pure meso-2,3-BD. D-2,3-butanediol production is abolished by deleting D-2,3-butanediol dehydrogenase (EC 1.1.1.4) coding gene bdhA, and acoA gene is knocked out to prevent the degradation of acetoin, the immediate precursor of 2,3-butanediol. Next, both pta and ldh gene are deleted to decrease the accumulation of the byproducts, acetate and L-lactate. The meso-2,3-butanediol dehydrogenase coding gene from Klebsiella pneumoniae CICC10011 is introduced, as well as alsSD overexpressed in the tetra mutant (DELTAacoADELTAbdhADELTAptaDELTAldh) to achieve the efficient production of chiral meso-2,3-butanediol. Finally, the pool of NADH availability is further increased to facilitate the conversion of meso-2,3-butanediol from acetoin by overexpressing the udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-butanediol with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct acetoin is no more than 1.1 g/L. Method optimization. The titer of meso-2,3-butanediol is almost unchanged at 37°C, 42°C, and 46°C, while the meso-2,3-butanediol productivity increases when the cultivation temperature is increased from 37°C to 46°C. The titer and productivity at 50°C decreases by 28.6% and 36.3% compared to those at 37°C
-
additional information
AEF50077
efficient (3R)-acetoin production from meso-2,3-butanediol using a whole-cell biocatalyst with coexpression of Serratia sp. meso-2,3-butanediol dehydrogenase, Lactobacillus brevis NADH oxidase and Vitreoscilla sp. hemoglobin
additional information
-
efficient (3R)-acetoin production from meso-2,3-butanediol using a whole-cell biocatalyst with coexpression of Serratia sp. meso-2,3-butanediol dehydrogenase, Lactobacillus brevis NADH oxidase and Vitreoscilla sp. hemoglobin
-
additional information
-
the regeneration of oxidised nicotinamide adenine dinucleotide is a key point in preparative application of dehydrogenases for the oxidative route. An electrochemical regeneration system is successfully combined with the BDH catalysed reaction. Up to 48 mM (R)-acetoin is produced in the reaction system while productivities up to 2 mM/h are reached. Possibility to apply an electrochemical system in a semi-preparative synthesis. Lyophilised recombinant ADH-9 from Escherichia coli BL21(DE3) cells is immobilized onto Amberlite FPA54 to 0.01 U per mg carrier leading to increased productivity compared to the immobilised form, method optimization
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Otagiri, M.; Kurisu, G.; Ui, S.; Takusagawa, Y.; Ohkuma, M.; Kudo, T.; Kusunoki, M.
Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms
J. Biochem.
129
205-208
2001
Klebsiella pneumoniae
brenda
Ui, S.; Mimura, A.; Ohkuma, M.; Kudo, T.
Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase
Lett. Appl. Microbiol.
28
457-460
1999
Klebsiella pneumoniae
brenda
Nielsen, D.R.; Yoon, S.H.; Yuan, C.J.; Prather, K.L.
Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli
Biotechnol. J.
5
274-284
2010
Escherichia coli, Saccharomyces cerevisiae
brenda
Gonzalez, E.; Fernandez, M.R.; Marco, D.; Calam, E.; Sumoy, L.; Pares, X.; Dequin, S.; Biosca, J.A.
Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol
Appl. Environ. Microbiol.
76
670-679
2010
Saccharomyces cerevisiae
brenda
Otagiri, M.; Ui, S.; Takusagawa, Y.; Ohtsuki, T.; Kurisu, G.; Kusunoki, M.
Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases
FEBS Lett.
584
219-223
2010
Corynebacterium glutamicum
brenda
Zhang, L.; Xu, Q.; Zhan, S.; Li, Y.; Lin, H.; Sun, S.; Sha, L.; Hu, K.; Guan, X.; Shen, Y.
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30
Appl. Microbiol. Biotechnol.
98
1175-1184
2014
Serratia marcescens (H9XP47), Serratia marcescens, Serratia marcescens H30 (H9XP47), Serratia marcescens H30
brenda
Zhang, G.L.; Wang, C.W.; Li, C.
Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae
Biotechnol. Lett.
34
1519-1523
2012
Klebsiella pneumoniae, Klebsiella pneumoniae XJ-Li
brenda
Rados, D.; Turner, D.L.; Catarino, T.; Hoffart, E.; Neves, A.R.; Eikmanns, B.J.; Blombach, B.; Santos, H.
Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol
Appl. Microbiol. Biotechnol.
100
10573-10583
2016
Corynebacterium glutamicum
brenda
Li, L.; Zhang, L.; Li, K.; Wang, Y.; Gao, C.; Han, B.; Ma, C.; Xu, P.
A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical
Biotechnol. Biofuels
6
123
2013
Bacillus licheniformis 10-1-A (X5F726), Bacillus licheniformis (X5F726)
brenda
Qi, G.; Kang, Y.; Li, L.; Xiao, A.; Zhang, S.; Wen, Z.; Xu, D.; Chen, S.
Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
Biotechnol. Biofuels
7
16
2014
Bacillus licheniformis, Bacillus licheniformis WX-02
brenda
Fu, J.; Huo, G.; Feng, L.; Mao, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X.
Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production
Biotechnol. Biofuels
9
90
2016
Klebsiella pneumoniae, Klebsiella pneumoniae CICC10011
brenda
Guo, Z.; Zhao, X.; He, Y.; Yang, T.; Gao, H.; Li, G.; Chen, F.; Sun, M.; Lee, J.K.; Zhang, L.
Efficient (3R)-acetoin production from meso-2,3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase and Vitreoscilla hemoglobin
J. Microbiol. Biotechnol.
27
92-100
2016
Serratia sp. (AEF50077), Serratia sp. T241 (AEF50077)
brenda
Kochius, S.; Paetzold, M.; Scholz, A.; Merkens, H.; Vogel, A.; Ansorge-Schumacher, M.; Hollmann, F.; Schrader, J.; Holtmann, D.
Enantioselective enzymatic synthesis of the alpha-hydroxy ketone (R)-acetoin from meso-2,3-butanediol
J. Mol. Catal. B
103
61-66
2014
uncultured bacterium
-
brenda
Hao, W.; Ji, F.; Wang, J.; Zhang, Y.; Wang, T.; Bao, Y.
Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis
J. Mol. Catal. B
109
184-190
2014
Bacillus subtilis (A0A1D8FJM6), Klebsiella aerogenes (A0A0H3FZT7), Klebsiella aerogenes KCTC 2190 (A0A0H3FZT7)
-
brenda
Zhang, L.; Guo, Z.; Chen, J.; Xu, Q.; Lin, H.; Hu, K.; Guan, X.; Shen, Y.
Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241
Sci. Rep.
6
19257
2016
no activity in Escherichia coli
brenda