Any feedback?
Please rate this page
(all_enzymes.php)
(0/150)

BRENDA support

6.1.1.18: glutamine-tRNA ligase

This is an abbreviated version!
For detailed information about glutamine-tRNA ligase, go to the full flat file.

Word Map on EC 6.1.1.18

Reaction

ATP
+
L-glutamine
+
tRNAGln
=
AMP
+
diphosphate
+
L-glutaminyl-tRNAGln

Synonyms

class I glutaminyl-tRNA synthetase, cytosolic glutaminyl-tRNA synthetase, Gln-RS, Gln4, GlnRS, Glutamine translase, Glutamine--tRNA ligase, Glutamine-tRNA synthetase, glutaminyl tRNA synthetase, Glutaminyl-transfer ribonucleate synthetase, Glutaminyl-transfer RNA synthetase, Glutaminyl-tRNA synthetase, glutaminyltRNA synthetase, glutamyl/glutaminyl-tRNA synthetase, QARS, QRS, Synthetase, glutaminyl-transfer ribonucleate, Vegetative specific protein H4

ECTree

     6 Ligases
         6.1 Forming carbon-oxygen bonds
             6.1.1 Ligases forming aminoacyl-tRNA and related compounds
                6.1.1.18 glutamine-tRNA ligase

Engineering

Engineering on EC 6.1.1.18 - glutamine-tRNA ligase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A29X
-
site-directed mutagenesis
C229R
site-directed mutagenesis, transplanting the conserved arginine residue from glutamyl-tRNA synthetase, EC 6.1.1.17, to glutaminyltRNA synthetase improves the KM of GlnRS for noncognate glutamate
C229R/Q255I
site-directed mutagenesis, comparison of mutant activity with glutamate and glutamine to charge tRNAGln to the wild-type activity, the mutant shows no activity with L-Gln, but weakly with L-Glu
C229R/Q255I/S227A/F233Y
site-directed mutagenesis, comparison of mutant activity with glutamate and glutamine to charge tRNAGln to the wild-type activity, the mutant shows no activity with L-Gln, but activity with L-Glu
cGluGlnRS
-
a chimeric protein, consisting of the catalytic domain of GluRS and the anticodon-binding domain of GlnRS, is constructed
D235A
-
saturation mutagenesis, only little complementation of glnS-deficient strain
D486R/L488Q
the double mutant causes a relaxed tRNA anticodon specificity
D66E
-
saturation mutagenesis, 18fold increased Km for glutamine, decreased turnover
D66F
-
saturation mutagenesis, highly increased Km for glutamine, 1200fold decrease in activity
D66G
-
saturation mutagenesis, only little complementation of glnS-deficient strain
D66H
-
saturation mutagenesis, only little complementation of glnS-deficient strain
D66R
-
saturation mutagenesis, only little complementation of glnS-deficient strain
D81Q
site-diretced mutagenesis, the mutant has and increased, inverted stereospecificity. D81Q is predicted to lead to a rotated ligand backbone and an increased, not a decreased L-Tyr preference
E222K
site-directed mutagenesis, mutational structure-function study, the residue is part of the invariant Hub, the mutation leads to mischarging and affected cognate tRNAGln recognition
E323A
-
site-directed mutagenesis, the mutation produces small but consistent 2 to 3fold improvements in glutamine-binding affinity compared to the wild-type enzyme
E34A
-
site-directed mutagenesis, the mutant shows highly increased Km and reduced kcat and activity compared to the wild-type enzyme
E34D
-
site-directed mutagenesis, the mutant shows highly increased Km and reduced kcat and activity compared to the wild-type enzyme
E34Q
-
site-directed mutagenesis, the mutant shows highly increased Km and reduced kcat and activity compared to the wild-type enzyme
E73A
-
site-directed mutagenesis, the mutant shows highly increased Km and reduced kcat and activity compared to the wild-type enzyme
E73Q
-
site-directed mutagenesis, the mutant shows highly increased Km and reduced kcat and activity compared to the wild-type enzyme, product release remains the rate-limiting step in E73Q
F233D
-
saturation mutagenesis, highly increased Km for glutamine, 3700fold decrease in activity
F233L
-
saturation mutagenesis, 19fold increased Km for glutamine, decreased turnover
F233Y
-
saturation mutagenesis, increased Km for glutamine, increased turnover
K194A
-
site-directed mutagenesis, the mutation perturbs the dissociation constant in ATP binding
K401A
-
site-directed mutagenesis, the mutant shows reduced kcat compared to the wild-type enzyme
L136A
-
site-directed mutagenesis, the mutation perturbs the dissociation constant in ATP binding
N320A
-
site-directed mutagenesis, the mutation produces small but consistent 2 to 3fold improvements in glutamine-binding affinity compared to the wild-type enzyme
N336A
-
site-directed mutagenesis, the mutation removes contact with the ribose at U38, but does not significantly influence glutamine affinity
N370A
-
site-directed mutagenesis, the mutation removes contact with the base of U38, but does not significantly influence glutamine affinity
Q255I
site-directed mutagenesis, mutational structure-function study, the residue is part of the invariant Hub, the mutation leads to reduced specificity for cognate Gln recognition and increased Glu recognition
Q318A
-
site-directed mutagenesis, the mutation produces small but consistent 2 to 3fold improvements in glutamine-binding affinity compared to the wild-type enzyme
Q517A
-
site-directed mutagenesis, the mutant shows reduced kcat compared to the wild-type enzyme
R260Q
site-diretced mutagenesis, mutating Arg260 to the homologous but neutral Gln does not reduce the L-GlnAMP preference, instead, the mutation produces a change in the DELTADELTAG value that is much smaller than the wild-type free energy component
R30A
site-directed mutagenesis, comparison of mutant activity with glutamate and glutamine to charge tRNAGln to the wild-type activity, the mutant shows no activity with L-Glu
R30K
site-directed mutagenesis, comparison of mutant activity with glutamate and glutamine to charge tRNAGln to the wild-type activity, the mutant shows weak activity with L-Glu
R341A
R410A
-
site-directed mutagenesis, the mutation removes contact with the base of C34, but does not significantly influence glutamine affinity
R520A
-
site-directed mutagenesis, the mutant shows reduced kcat compared to the wild-type enzyme
R545A
-
site-directed mutagenesis, the mutant shows reduced kcat compared to the wild-type enzyme
T316A
-
site-directed mutagenesis, the mutation produces small but consistent 2 to 3fold improvements in glutamine-binding affinity compared to the wild-type enzyme
T547A
-
site-directed mutagenesis, the mutant shows reduced kcat compared to the wild-type enzyme
Y211F
-
saturation mutagenesis, 60fold increased Km for glutamine, decreased turnover
Y211F/F233Y
-
saturation mutagenesis, increased Km for glutamine, about 6fold decreased activity
Y211G
-
saturation mutagenesis, only little complementation of glnS-deficient strain
Y211H
site-directed mutagenesis, mutational structure-function study, the residue is part of the connection in the quaternary cognate-complex, the mutants shows slow solvation dynamics in the active site
Y211L
-
saturation mutagenesis, unaffected Km for glutamine, decreased turnover
Y211S
-
saturation mutagenesis, 1700fold decrease in activity
Y240E
-
site-directed mutagenesis, active site mutant, 5fold improved glutamic acid recognition in vitro, partial complementation of an enzyme-deficient strain
Y240E/G
site-directed mutagenesis, mutational structure-function study, the residue is part of the Hub common to ligand-free and quaternary cognate-complex, the mutant shows increased Glu recognition in vitro and in vivo
Y240G
-
site-directed mutagenesis, active site mutant, 3fold improved glutamic acid recognition in vitro, partial complementation of an enzyme-deficient strain
G45V/R403W
naturally occuring mutation involved in progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres, the mutant shows a highly reduced aminoacylation activity, heterozygous mutations
H175A
the mutant shows reduced activity compared to the wild-type
K496stop
naturally occuring mutation involved in early-onset epileptic encephalopathy (EOEE), heterozygous mutation leading to a deletion of part of the catalytic domain and the entire anticodon-binding domain, a loss-of-function mutant
R403W
R515W
Y57H/R515W
occuring mutation involved in progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres, the mutant shows a highly reduced aminoacylation activity, heterozygous mutations
additional information