Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.14.18.1 extracted from

  • Kim, Y.J.; Uyama, H.
    Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future (2005), Cell. Mol. Life Sci., 62, 1707-1723.
    View publication on PubMed

Application

Application Comment Organism
drug development the enzyme is a target for development of specific inhibitors to avoid unfavorable enzymatic browning of plant-derived foods by tyrosinase causing decrease in nutritional quality and economic loss of food products Beta vulgaris
nutrition the enzyme is a target for development of specific inhibitors to avoid unfavorable enzymatic browning of plant-derived foods by tyrosinase causing decrease in nutritional quality and economic loss of food products Beta vulgaris

Inhibitors

Inhibitors Comment Organism Structure
(-)-epigallocatechin competitive, IC50: 0.035 mM Agaricus bisporus
(-)-epigallocatechin competitive, IC50: 0.035 mM Beta vulgaris
(-)-epigallocatechin competitive, IC50: 0.035 mM Homo sapiens
(-)-epigallocatechin competitive, IC50: 0.035 mM Neurospora crassa
(-)-epigallocatechin competitive, IC50: 0.035 mM Streptomyces glaucescens
(-)-epigallocatechin-3-O-gallate competitive, IC50: 0.034 mM Agaricus bisporus
(-)-epigallocatechin-3-O-gallate competitive, IC50: 0.034 mM Beta vulgaris
(-)-epigallocatechin-3-O-gallate competitive, IC50: 0.034 mM Homo sapiens
(-)-epigallocatechin-3-O-gallate competitive, IC50: 0.034 mM Neurospora crassa
(-)-epigallocatechin-3-O-gallate competitive, IC50: 0.034 mM Streptomyces glaucescens
(R)-HTCCA
-
Agaricus bisporus
(R)-HTCCA
-
Beta vulgaris
(R)-HTCCA
-
Homo sapiens
(R)-HTCCA
-
Neurospora crassa
(R)-HTCCA
-
Streptomyces glaucescens
(S)-HTCCA
-
Agaricus bisporus
(S)-HTCCA
-
Beta vulgaris
(S)-HTCCA
-
Homo sapiens
(S)-HTCCA
-
Neurospora crassa
(S)-HTCCA
-
Streptomyces glaucescens
4-hexylresorcinol
-
Agaricus bisporus
4-hexylresorcinol
-
Beta vulgaris
4-hexylresorcinol
-
Homo sapiens
4-hexylresorcinol
-
Neurospora crassa
4-hexylresorcinol
-
Streptomyces glaucescens
aloesin
-
Agaricus bisporus
aloesin
-
Beta vulgaris
aloesin
-
Homo sapiens
aloesin
-
Neurospora crassa
aloesin
-
Streptomyces glaucescens
Anisaldehyde
-
Agaricus bisporus
Anisaldehyde
-
Beta vulgaris
Anisaldehyde
-
Homo sapiens
Anisaldehyde
-
Neurospora crassa
Anisaldehyde
-
Streptomyces glaucescens
ascorbic acid inhibition of tyrosinase-catalyzed enzymatic browning by trapping the dopaquinone intermediate with cysteine or ascorbic acid, overview Beta vulgaris
azelaic acid
-
Agaricus bisporus
azelaic acid
-
Beta vulgaris
azelaic acid
-
Homo sapiens
azelaic acid
-
Neurospora crassa
azelaic acid
-
Streptomyces glaucescens
captopril
-
Agaricus bisporus
captopril
-
Beta vulgaris
captopril
-
Homo sapiens
captopril
-
Neurospora crassa
captopril
-
Streptomyces glaucescens
cinnamaldehyde
-
Agaricus bisporus
cinnamaldehyde
-
Beta vulgaris
cinnamaldehyde
-
Homo sapiens
cinnamaldehyde
-
Neurospora crassa
cinnamaldehyde
-
Streptomyces glaucescens
cuminaldehyde
-
Agaricus bisporus
cuminaldehyde
-
Beta vulgaris
cuminaldehyde
-
Homo sapiens
cuminaldehyde
-
Neurospora crassa
cuminaldehyde
-
Streptomyces glaucescens
Cupferron
-
Agaricus bisporus
Cupferron
-
Beta vulgaris
Cupferron
-
Homo sapiens
Cupferron
-
Neurospora crassa
Cupferron
-
Streptomyces glaucescens
cysteine inhibition of tyrosinase-catalyzed enzymatic browning by trapping the dopaquinone intermediate with cysteine or ascorbic acid, overview Beta vulgaris
davanol competitive, IC50: 0.017 mM Agaricus bisporus
davanol competitive, IC50: 0.017 mM Beta vulgaris
davanol competitive, IC50: 0.017 mM Homo sapiens
davanol competitive, IC50: 0.017 mM Neurospora crassa
davanol competitive, IC50: 0.017 mM Streptomyces glaucescens
decahydro-2-naphthyl gallate
-
Agaricus bisporus
decahydro-2-naphthyl gallate
-
Beta vulgaris
decahydro-2-naphthyl gallate
-
Homo sapiens
decahydro-2-naphthyl gallate
-
Neurospora crassa
decahydro-2-naphthyl gallate
-
Streptomyces glaucescens
dopastin
-
Agaricus bisporus
dopastin
-
Beta vulgaris
dopastin
-
Homo sapiens
dopastin
-
Neurospora crassa
dopastin
-
Streptomyces glaucescens
geranyl gallate
-
Agaricus bisporus
geranyl gallate
-
Beta vulgaris
geranyl gallate
-
Homo sapiens
geranyl gallate
-
Neurospora crassa
geranyl gallate
-
Streptomyces glaucescens
glabrene
-
Agaricus bisporus
glabrene
-
Beta vulgaris
glabrene
-
Homo sapiens
glabrene
-
Neurospora crassa
glabrene
-
Streptomyces glaucescens
glabridin
-
Agaricus bisporus
glabridin
-
Beta vulgaris
glabridin
-
Homo sapiens
glabridin
-
Neurospora crassa
glabridin
-
Streptomyces glaucescens
isoliquiritigenin
-
Agaricus bisporus
isoliquiritigenin
-
Beta vulgaris
isoliquiritigenin
-
Homo sapiens
isoliquiritigenin
-
Neurospora crassa
isoliquiritigenin
-
Streptomyces glaucescens
kaempferol competitive, IC50: 0.230 Agaricus bisporus
kaempferol competitive, IC50: 0.230 Beta vulgaris
kaempferol competitive, IC50: 0.230 Homo sapiens
kaempferol competitive, IC50: 0.230 Neurospora crassa
kaempferol competitive, IC50: 0.230 Streptomyces glaucescens
kojic acid
-
Agaricus bisporus
kojic acid
-
Beta vulgaris
kojic acid
-
Homo sapiens
kojic acid
-
Neurospora crassa
kojic acid
-
Streptomyces glaucescens
L-mimosine
-
Agaricus bisporus
L-mimosine
-
Beta vulgaris
L-mimosine
-
Homo sapiens
L-mimosine
-
Neurospora crassa
L-mimosine
-
Streptomyces glaucescens
luteolin
-
Agaricus bisporus
luteolin
-
Beta vulgaris
luteolin
-
Homo sapiens
luteolin
-
Neurospora crassa
luteolin
-
Streptomyces glaucescens
luteolin 7-O-glucoside
-
Agaricus bisporus
luteolin 7-O-glucoside
-
Beta vulgaris
luteolin 7-O-glucoside
-
Homo sapiens
luteolin 7-O-glucoside
-
Neurospora crassa
luteolin 7-O-glucoside
-
Streptomyces glaucescens
Methimazole
-
Agaricus bisporus
Methimazole
-
Beta vulgaris
Methimazole
-
Homo sapiens
Methimazole
-
Neurospora crassa
Methimazole
-
Streptomyces glaucescens
additional information structure, application and importance of inhibitors, overview Agaricus bisporus
additional information structure, application and importance of inhibitors, overview Beta vulgaris
additional information melanin plays a crucial protective role against skin photocarcinogenesis, however, the production of abnormal melanin pigmentation is a serious esthetic problem in humans, melanin biosynthesis can be inhibited by avoiding UV exposure, the inhibition of tyrosinase, the inhibition of melanocyte metabolism and proliferation, or the removal of melanin with corneal ablation, overview, structure, application and importance of inhibitors, overview Homo sapiens
additional information structure, application and importance of inhibitors, overview Neurospora crassa
additional information structure, application and importance of inhibitors, overview Streptomyces glaucescens
morin competitive, IC50: 2.320 mM Agaricus bisporus
morin competitive, IC50: 2.320 mM Beta vulgaris
morin competitive, IC50: 2.320 mM Homo sapiens
morin competitive, IC50: 2.320 mM Neurospora crassa
morin competitive, IC50: 2.320 mM Streptomyces glaucescens
quercetin competitive, IC50: 0.070 mM Agaricus bisporus
quercetin competitive, IC50: 0.070 mM Beta vulgaris
quercetin competitive, IC50: 0.070 mM Homo sapiens
quercetin competitive, IC50: 0.070 mM Neurospora crassa
quercetin competitive, IC50: 0.070 mM Streptomyces glaucescens
tropolone
-
Agaricus bisporus
tropolone
-
Beta vulgaris
tropolone
-
Homo sapiens
tropolone
-
Neurospora crassa
tropolone
-
Streptomyces glaucescens

Localization

Localization Comment Organism GeneOntology No. Textmining
membrane bound Homo sapiens 16020
-

Metals/Ions

Metals/Ions Comment Organism Structure
Cu2+ bound to the enzyme, presently available for any tyrosinases, the central domain contains two copper binding sites, mettyrosinase, the resting form of tyrosinase, contains two tetragonal Cu(II) ions antiferromagnetically coupled through an endogenous bridge, although hydroxide exogenous ligands other than peroxide are bound to the copper site, the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers Streptomyces glaucescens
Cu2+ bound to the enzyme, the central domain contains two copper binding sites, mettyrosinase, the resting form of tyrosinase, contains two tetragonal Cu(II) ions antiferromagnetically coupled through an endogenous bridge, although hydroxide exogenous ligands other than peroxide are bound to the copper site, the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers Beta vulgaris
Cu2+ bound to the enzyme, the central domain contains two copper binding sites, mettyrosinase, the resting form of tyrosinase, contains two tetragonal Cu(II) ions antiferromagnetically coupled through an endogenous bridge, although hydroxide exogenous ligands other than peroxide are bound to the copper site, the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers Homo sapiens
Cu2+ bound to the enzyme, the central domain contains two copper binding sites, mettyrosinase, the resting form of tyrosinase, contains two tetragonal Cu(II) ions antiferromagnetically coupled through an endogenous bridge, although hydroxide exogenous ligands other than peroxide are bound to the copper site, the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers Neurospora crassa
Cu2+ bound to the enzyme, the central domain contains two copper binding sites, mettyrosinase, the resting form of tyrosinase, contains two tetragonal Cu(II) ions antiferromagnetically coupled through an endogenous bridge, although hydroxide exogenous ligands other than peroxide are bound to the copper site, the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers Agaricus bisporus
H2O2 the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Cu(II) charge transfer Beta vulgaris
H2O2 the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Cu(II) charge transfer Homo sapiens
H2O2 the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Cu(II) charge transfer Neurospora crassa
H2O2 the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Cu(II) charge transfer Agaricus bisporus
H2O2 the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Æ Cu(II) charge transfer Streptomyces glaucescens

Molecular Weight [Da]

Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
30900
-
1 * 30900 Streptomyces glaucescens
40000
-
1 * 40000 Beta vulgaris
43000
-
2 * 134000 + 2 * 43000, alpha2beta2 subunit composition Agaricus bisporus
46000
-
1 * 46000 Neurospora crassa
66700
-
1 * 66700 Homo sapiens
134000
-
2 * 134000 + 2 * 43000, alpha2beta2 subunit composition Agaricus bisporus

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
3,4,5-trihydroxy-L-phenylalanine + O2 Homo sapiens cytotoxicity of TOPA ?
-
?
chlorogenic acid + O2 Beta vulgaris formation of a highly reactive o-quinone intermediate which then can interact with NH2 groups of lysine, SCH3 groups of methionines and indole rings of tryptophan in nucleophilic addition and in polymerization reactions, the so-called browning and greening reactions ?
-
?
L-tyrosine + L-dopa + O2 Beta vulgaris
-
L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2 Neurospora crassa
-
L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2 Agaricus bisporus
-
L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2 Streptomyces glaucescens
-
L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2 Homo sapiens pathway of melanin biosynthesis, detailed overview L-dopa + dopaquinone + H2O cytotoxicity of L-DOPA ?
additional information Homo sapiens tyrosinase is known to be a key enzyme in melanin biosynthesis, involved in determining the color of mammalian skin and hair, various dermatological disorders, such as melasma, age spots and sites of actinic damage, arise from the accumulation of an excessive level of epidermal pigmentation ?
-
?

Organism

Organism UniProt Comment Textmining
Agaricus bisporus
-
-
-
Beta vulgaris
-
spinach-beet
-
Homo sapiens
-
-
-
Neurospora crassa
-
-
-
Streptomyces glaucescens
-
-
-

Posttranslational Modification

Posttranslational Modification Comment Organism
glycoprotein 13% carbohydrate Homo sapiens

Reaction

Reaction Comment Organism Reaction ID
L-tyrosine + O2 = dopaquinone + H2O catalytic cycle, reaction mechanism, active site structure Beta vulgaris
L-tyrosine + O2 = dopaquinone + H2O catalytic cycle, reaction mechanism, active site structure Homo sapiens
L-tyrosine + O2 = dopaquinone + H2O catalytic cycle, reaction mechanism, active site structure Neurospora crassa
L-tyrosine + O2 = dopaquinone + H2O catalytic cycle, reaction mechanism, active site structure Agaricus bisporus
L-tyrosine + O2 = dopaquinone + H2O catalytic cycle, reaction mechanism, active site structure Streptomyces glaucescens

Source Tissue

Source Tissue Comment Organism Textmining
melanocyte
-
Homo sapiens
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3,4,5-trihydroxy-L-phenylalanine + O2 cytotoxicity of TOPA Homo sapiens ?
-
?
3,4,5-trihydroxy-L-phenylalanine + O2 i.e. TOPA Homo sapiens ?
-
?
chlorogenic acid + O2 formation of a highly reactive o-quinone intermediate which then can interact with NH2 groups of lysine, SCH3 groups of methionines and indole rings of tryptophan in nucleophilic addition and in polymerization reactions, the so-called browning and greening reactions Beta vulgaris ?
-
?
chlorogenic acid + O2 formation of a highly reactive o-quinone intermediate Beta vulgaris ?
-
?
L-tyrosine + L-dopa + O2
-
Beta vulgaris L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2
-
Neurospora crassa L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2
-
Agaricus bisporus L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2
-
Streptomyces glaucescens L-dopa + dopaquinone + H2O
-
?
L-tyrosine + L-dopa + O2
-
Beta vulgaris L-dopa + dopaquinone + H2O o-dopaquinone is unstable in aqueous solution and rapidly suffers a non-enzymatic cyclization to leukodopachrome ?
L-tyrosine + L-dopa + O2
-
Homo sapiens L-dopa + dopaquinone + H2O o-dopaquinone is unstable in aqueous solution and rapidly suffers a non-enzymatic cyclization to leukodopachrome ?
L-tyrosine + L-dopa + O2
-
Neurospora crassa L-dopa + dopaquinone + H2O o-dopaquinone is unstable in aqueous solution and rapidly suffers a non-enzymatic cyclization to leukodopachrome ?
L-tyrosine + L-dopa + O2
-
Agaricus bisporus L-dopa + dopaquinone + H2O o-dopaquinone is unstable in aqueous solution and rapidly suffers a non-enzymatic cyclization to leukodopachrome ?
L-tyrosine + L-dopa + O2
-
Streptomyces glaucescens L-dopa + dopaquinone + H2O o-dopaquinone is unstable in aqueous solution and rapidly suffers a non-enzymatic cyclization to leukodopachrome ?
L-tyrosine + L-dopa + O2 pathway of melanin biosynthesis, detailed overview Homo sapiens L-dopa + dopaquinone + H2O cytotoxicity of L-DOPA ?
additional information tyrosinase is known to be a key enzyme in melanin biosynthesis, involved in determining the color of mammalian skin and hair, various dermatological disorders, such as melasma, age spots and sites of actinic damage, arise from the accumulation of an excessive level of epidermal pigmentation Homo sapiens ?
-
?
additional information tyrosinase is a copper-containing enzyme that catalyzes two distinct reactions of melanin synthesis: the hydroxylation of tyrosine by monophenolase action and the oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to o-dopaquinone by diphenolase action Beta vulgaris ?
-
?
additional information tyrosinase is a copper-containing enzyme that catalyzes two distinct reactions of melanin synthesis: the hydroxylation of tyrosine by monophenolase action and the oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to o-dopaquinone by diphenolase action Homo sapiens ?
-
?
additional information tyrosinase is a copper-containing enzyme that catalyzes two distinct reactions of melanin synthesis: the hydroxylation of tyrosine by monophenolase action and the oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to o-dopaquinone by diphenolase action Neurospora crassa ?
-
?
additional information tyrosinase is a copper-containing enzyme that catalyzes two distinct reactions of melanin synthesis: the hydroxylation of tyrosine by monophenolase action and the oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to o-dopaquinone by diphenolase action Agaricus bisporus ?
-
?
additional information tyrosinase is a copper-containing enzyme that catalyzes two distinct reactions of melanin synthesis: the hydroxylation of tyrosine by monophenolase action and the oxidation of 3,4-dihydroxyphenylalanine (L-DOPA) to o-dopaquinone by diphenolase action Streptomyces glaucescens ?
-
?

Subunits

Subunits Comment Organism
monomer 1 * 40000 Beta vulgaris
monomer 1 * 46000 Neurospora crassa
monomer 1 * 30900 Streptomyces glaucescens
monomer 1 * 66700 Homo sapiens
tetramer 2 * 134000 + 2 * 43000, alpha2beta2 subunit composition Agaricus bisporus

Synonyms

Synonyms Comment Organism
monophenolase
-
Beta vulgaris
monophenolase
-
Homo sapiens
monophenolase
-
Neurospora crassa
monophenolase
-
Agaricus bisporus
monophenolase
-
Streptomyces glaucescens
tyrosinase
-
Beta vulgaris
tyrosinase
-
Homo sapiens
tyrosinase
-
Neurospora crassa
tyrosinase
-
Agaricus bisporus
tyrosinase
-
Streptomyces glaucescens

Cofactor

Cofactor Comment Organism Structure
additional information if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial Beta vulgaris
additional information if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial Homo sapiens
additional information if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial Neurospora crassa
additional information if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial Agaricus bisporus
additional information if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial Streptomyces glaucescens

IC50 Value

IC50 Value IC50 Value Maximum Comment Organism Inhibitor Structure
0.017
-
competitive, IC50: 0.017 mM Beta vulgaris davanol
0.017
-
competitive, IC50: 0.017 mM Homo sapiens davanol
0.017
-
competitive, IC50: 0.017 mM Neurospora crassa davanol
0.017
-
competitive, IC50: 0.017 mM Agaricus bisporus davanol
0.017
-
competitive, IC50: 0.017 mM Streptomyces glaucescens davanol
0.034
-
competitive, IC50: 0.034 mM Beta vulgaris dillapiole
0.034
-
competitive, IC50: 0.034 mM Homo sapiens dillapiole
0.034
-
competitive, IC50: 0.034 mM Neurospora crassa dillapiole
0.034
-
competitive, IC50: 0.034 mM Agaricus bisporus dillapiole
0.034
-
competitive, IC50: 0.034 mM Streptomyces glaucescens dillapiole
0.035
-
competitive, IC50: 0.035 mM Beta vulgaris 3-cymene
0.035
-
competitive, IC50: 0.035 mM Homo sapiens 3-cymene
0.035
-
competitive, IC50: 0.035 mM Neurospora crassa 3-cymene
0.035
-
competitive, IC50: 0.035 mM Agaricus bisporus 3-cymene
0.035
-
competitive, IC50: 0.035 mM Streptomyces glaucescens 3-cymene
0.07
-
competitive, IC50: 0.070 mM Beta vulgaris quercetin
0.07
-
competitive, IC50: 0.070 mM Homo sapiens quercetin
0.07
-
competitive, IC50: 0.070 mM Neurospora crassa quercetin
0.07
-
competitive, IC50: 0.070 mM Agaricus bisporus quercetin
0.07
-
competitive, IC50: 0.070 mM Streptomyces glaucescens quercetin
0.23
-
competitive, IC50: 0.230 mM Neurospora crassa kaempferol
0.23
-
competitive, IC50: 0.230 mM Agaricus bisporus kaempferol
0.23
-
competitive, IC50: 0.230 mM Streptomyces glaucescens kaempferol
2.32
-
competitive, IC50: 2.320 mM Beta vulgaris morin
2.32
-
competitive, IC50: 2.320 mM Homo sapiens morin
2.32
-
competitive, IC50: 2.320 mM Neurospora crassa morin
2.32
-
competitive, IC50: 2.320 mM Agaricus bisporus morin
2.32
-
competitive, IC50: 2.320 mM Streptomyces glaucescens morin