Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 6.3.5.1 - NAD+ synthase (glutamine-hydrolysing)

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Rising, K.A.; Schramm, C.L.
Enzymatic synthesis of NAD+ with the specific incorporation of atomic labels
J. Am. Chem. Soc.
116
6531-6536
1994
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Wagner, R.; Wagner, K.G.
The pyridine-nucleotide cycle in tobacco. Enzyme activities for the de-novo synthesis of NAD
Planta
165
532-537
1985
Nicotiana tabacum
Manually annotated by BRENDA team
Yu, C.K.; Dietrich, L.S.
Purification and properties of yeast nicotinamide adenine dinucleotide synthetase
J. Biol. Chem.
247
4794-4802
1972
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Zerez, C.R.; Wong, M.D.; Tanaka, K.R.
Partial purification and properties of nicotinamide adenine dinucleotide synthetase from human erythrocytes: evidence that enzyme activity is a sensitive indicator of lead exposure
Blood
75
1576-1582
1990
Homo sapiens
Manually annotated by BRENDA team
Shibata, K.; Hayakawa, T.; Iwai, K.
Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats
Agric. Biol. Chem.
50
3037-3041
1986
Rattus norvegicus
-
Manually annotated by BRENDA team
Cantoni, R.; Branzoni, M.; Labo, M.; Rizzi, M.; Riccardi, G.
The MTCY428.08 gene of Mycobacterium tuberculosis codes for NAD+ synthetase
J. Bacteriol.
180
3218-3221
1998
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Hara, N.; Yamada, K.; Terashima, M.; Osago, H.; Shimoyama, M.; Tsuchiya, M.
Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency
J. Biol. Chem.
278
10914-10921
2003
Homo sapiens (Q6IA69), Homo sapiens
Manually annotated by BRENDA team
Bellinzoni, M.; De Rossi, E.; Branzoni, M.; Milano, A.; Peverali, F.A.; Rizzi, M.; Riccardi, G.
Heterologous expression, purification, and enzymatic activity of Mycobacterium tuberculosis NAD(+) synthetase
Protein Expr. Purif.
25
547-557
2002
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Bembenek, M.E.; Kuhn, E.; Mallender, W.D.; Pullen, L.; Li, P.; Parsons, T.
A fluorescence-based coupling reaction for monitoring the activity of recombinant human NAD synthetase
Assay Drug Dev. Technol.
3
533-541
2005
Homo sapiens
Manually annotated by BRENDA team
Bellinzoni, M.; Buroni, S.; Pasca, M.R.; Guglierame, P.; Arcesi, F.; De Rossi, E.; Riccardi, G.
Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain
Res. Microbiol.
156
173-177
2005
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Wojcik, M.; Seidle, H.F.; Bieganowski, P.; Brenner, C.
Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste
J. Biol. Chem.
281
33395-33402
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Boshoff, H.I.; Xu, X.; Tahlan, K.; Dowd, C.S.; Pethe, K.; Camacho, L.R.; Park, T.H.; Yun, C.S.; Schnappinger, D.; Ehrt, S.; Williams, K.J.; Barry, C.E.
Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli
J. Biol. Chem.
283
19329-19341
2008
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Resto, M.; Yaffe, J.; Gerratana, B.
An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism
Biochim. Biophys. Acta
1794
1648-1653
2009
Thermotoga maritima
Manually annotated by BRENDA team
LaRonde-LeBlanc, N.; Resto, M.; Gerratana, B.
Regulation of active site coupling in glutamine-dependent NAD(+) synthetase
Nat. Struct. Mol. Biol.
16
421-429
2009
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Sorci, L.; Blaby, I.; De Ingeniis, J.; Gerdes, S.; Raffaelli, N.; de Crecy Lagard, V.; Osterman, A.
Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection
J. Biol. Chem.
285
39490-39499
2010
Acinetobacter baumannii, Acinetobacter baumannii (B0V8W9)
Manually annotated by BRENDA team
Hager, J.; Pellny, T.K.; Mauve, C.; Lelarge-Trouverie, C.; De Paepe, R.; Foyer, C.H.; Noctor, G.
Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply
Planta
231
1145-1157
2010
Nicotiana sylvestris
Manually annotated by BRENDA team
Lin, H.; Kwan, A.L.; Dutcher, S.K.
Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii
PLoS Genet.
6
e1001105
2010
Chlamydomonas reinhardtii (C4PG67)
Manually annotated by BRENDA team
Chuenchor, W.; Doukov, T.I.; Resto, M.; Chang, A.; Gerratana, B.
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase
Biochem. J.
443
417-426
2012
Mycobacterium tuberculosis (P9WJJ3), Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv (P9WJJ3)
Manually annotated by BRENDA team
Laskoski, K.; Santos, A.R.; Bonatto, A.C.; Pedrosa, F.O.; Souza, E.M.; Huergo, L.F.
In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae
Arch. Microbiol.
198
307-313
2016
Herbaspirillum seropedicae (D8IS59), Herbaspirillum seropedicae, Herbaspirillum seropedicae SmR1 (D8IS59)
Manually annotated by BRENDA team