Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2
3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O
1,4-dimethoxybenzene + H2O2
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxy-phenyl)propane + O2 + H2O2
1-(4'-methoxyphenyl)-1,2-dihydroxyethane + 3,4-diethoxybenzaldehyde
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
1-(4-ethoxy-3-methoxyphenyl)-1,2-propene + O2 + H2O2
1-(4-ethoxy-3-methoxyphenyl)-1,2-dihydroxypropane
1-(4-ethoxy-3-methoxyphenyl)propane + O2 + H2O2
1-(4-ethoxy-3-methoxyphenyl)1-hydroxypropane
-
-
-
?
1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2
vanillin + hydroxyacetaldehyde + guaiacol
-
Calpha-Cbeta bond cleavage of substrate takes place. This reaction is inhibited by addition of diaphorase, consistent with a radical mechanism for C-C bond cleavage
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
? + H2O
-
-
-
?
2,4-dichlorophenol + H2O2
?
2,6-dimethoxyphenol + H2O2
coerulignone + ?
2-chloro-1,4-dimethoxybenzene
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
3-methyl-2-benzothiazolinone hydrazone + H2O2
? + H2O
-
enzyme has several substrate binding sites for 3-methyl-2-benzothiazolinone hydrazone, in addition to low and high affinity binding sites for Mn2+
-
-
?
4,5-dichlorocatechol + H2O2
?
-
50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 1 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation
formation of water-insoluble oxidation products
-
?
4-chlorocatechol + H2O2
?
-
50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 1 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation
formation of water-insoluble oxidation products
-
?
4-methylcatechol + H2O2
?
-
50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 3 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation
formation of water-insoluble oxidation products
-
?
4-methylthio-2-oxobutanoate + H2O2
?
-
only in presence of veratryl alcohol, it possibly reacts with a veratryl alcohol radical to produce ethylene
-
-
?
catechol + H2O2
?
-
50 mM sodium tartrate buffer, pH 3.5 at 25°C, hydrogen peroxide concentration is 2 mM, addition of gelatin to the reaction mixtures protected lignin peroxidase from precipitation
formation of water-insoluble oxidation products
-
?
ferrocytochrome c + H2O2
?
-
-
-
?
fuchsine + H2O2
?
-
-
-
-
?
humic acid + H2O2
? + H2O
lignocellulose + H2O2
? + H2O
substrate is wheat straw lignocellulose
-
-
?
methylene blue + H2O2
? + H2O
-
-
-
-
?
mitoxantrone + H2O2
hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione + H2O
-
low efficiency
-
-
?
n-propanol + H2O2
?
-
-
-
-
?
n-propanol + H2O2
propanal + H2O
n-propanol + H2O2
propanaldehyde + H2O
n-propanol + H2O2
propionaldehyde + H2O
-
-
-
-
?
non-phenolic substrates + H2O2
?
pyrogallol red + H2O2
?
-
-
-
-
?
Reactive Black 5 + H2O2
?
lignin peroxidase can only oxidize Reactive Black 5 in the presence of redox mediators such as veratryl alcohol
-
-
?
reduced 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O2
oxidized 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O
-
-
-
?
rhodamine B + H2O2
?
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
veratryl alcohol + H2O2
?
veratryl alcohol + H2O2
veratraldehyde + H2O
xylene cyanol + H2O2
?
-
-
-
-
?
additional information
?
-
1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2

3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O
-
-
-
-
?
1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2
3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O
-
-
-
-
?
1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H2O2
3,4-dimethoxybenzaldehyde + 1-(3,4-dimethyl-phenyl)ethane-1,2-diol + H2O
-
-
-
-
?
1,4-dimethoxybenzene + H2O2

?
-
-
-
-
?
1,4-dimethoxybenzene + H2O2
?
-
-
-
-
?
1,4-dimethoxybenzene + H2O2
?
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxy-phenyl)propane + O2 + H2O2

1-(4'-methoxyphenyl)-1,2-dihydroxyethane + 3,4-diethoxybenzaldehyde
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxy-phenyl)propane + O2 + H2O2
1-(4'-methoxyphenyl)-1,2-dihydroxyethane + 3,4-diethoxybenzaldehyde
-
i.e. diarylpropane, lignin-model compound, alpha,beta-cleavage with insertion of a single atom of oxygen from O2 into the alpha-position of the product 1-(4'-methoxyphenyl)-1,2-dihydroxyethane
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2

?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
i.e. diarylpropane, involved in the oxidative breakdown of lignin in white rot basidiomycetes, induced by veratryl alcohol
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(3,4-diethoxyphenyl)-1,3-dihydroxy-2-(4-methoxyphenyl)-propane + O2 + H2O2
?
-
-
-
-
?
1-(4-ethoxy-3-methoxyphenyl)-1,2-propene + O2 + H2O2

1-(4-ethoxy-3-methoxyphenyl)-1,2-dihydroxypropane
-
olefinic hydroxylation
-
?
1-(4-ethoxy-3-methoxyphenyl)-1,2-propene + O2 + H2O2
1-(4-ethoxy-3-methoxyphenyl)-1,2-dihydroxypropane
-
olefinic hydroxylation
-
-
?
2,4-dichlorophenol + H2O2

?
-
-
-
-
?
2,4-dichlorophenol + H2O2
?
-
-
-
-
?
2,4-dichlorophenol + H2O2
?
-
-
-
-
?
2,6-dimethoxyphenol + H2O2

coerulignone + ?
-
-
-
?
2,6-dimethoxyphenol + H2O2
coerulignone + ?
-
-
-
?
2-chloro-1,4-dimethoxybenzene

?
-
-
-
-
?
2-chloro-1,4-dimethoxybenzene
?
-
-
-
-
?
3,4-dimethoxybenzyl alcohol + H2O2

3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
3,4-dimethoxybenzyl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
veratryl alcohol
-
?
humic acid + H2O2

?
-
-
-
-
?
humic acid + H2O2
?
-
-
-
-
?
humic acid + H2O2

? + H2O
-
-
purified enzyme depolymerises humic acid as a model of coal in presence of H2O2
-
?
humic acid + H2O2
? + H2O
-
-
purified enzyme depolymerises humic acid as a model of coal in presence of H2O2
-
?
L-Dopa + H2O2

?
-
-
-
-
?
L-Dopa + H2O2
?
-
-
-
-
?
lignin + H2O2

? + H2O
-
substrate Kraft lignin. The highest production of radicals with minimal loss of activity, is obtained by using an enzyme dose of 15 U/g, with a continuous addition of H2O2 during 1 h. Enzymatically generated Mn(III)-malonate is able to activate lignin
-
-
?
lignin + H2O2
? + H2O
-
substrate Kraft lignin. The highest production of radicals with minimal loss of activity, is obtained by using an enzyme dose of 15 U/g, with a continuous addition of H2O2 during 1 h. Enzymatically generated Mn(III)-malonate is able to activate lignin
-
-
?
lignin + H2O2
? + H2O
substrate is Kraft lignin
-
-
?
mimosine + H2O2

?
-
-
-
-
?
mimosine + H2O2
?
-
-
-
-
?
n-propanol + H2O2

propanal + H2O
-
-
-
-
?
n-propanol + H2O2
propanal + H2O
-
-
-
-
?
n-propanol + H2O2

propanaldehyde + H2O
-
-
-
-
?
n-propanol + H2O2
propanaldehyde + H2O
-
-
-
-
?
non-phenolic substrates + H2O2

?
-
e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether
-
-
?
non-phenolic substrates + H2O2
?
-
e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether
-
-
?
non-phenolic substrates + H2O2
?
-
e.g. 1,2,4-trimethoxybenzene, 4,4'-dimethoxybiphenyl, isoeugenol methylether, 1-(3,4-dimethoxyphenyl)-2-(2, 4-dichlorophenoxyl)-ethanol, guaiacyl glycerolether
-
-
?
oxytetracycline + H2O2

?
-
LiP shows strong degrading ability
-
-
?
oxytetracycline + H2O2
?
-
LiP shows strong degrading ability
-
-
?
tetracycline + H2O2

?
-
LiP shows strong degrading ability
-
-
?
tetracycline + H2O2
?
-
LiP shows strong degrading ability
-
-
?
veratryl alcohol + H2O2

3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
Lentinus strigellus
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
Lentinus strigellus SXS355
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
Loweporus lividus
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
ping pong mechanism
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
catalytic activity of lignin peroxidase and partition of veratryl alcohol in sodium bis(2-ethylhexyl)sulfosuccinate /isooctane/toluene/water reverse micelles. Activity depends to a great extent, on the composition of the reverse micelles. Optimum activity occurs at a molar ratio of water to sodium bis(2-ethylhexyl)sulfosuccinate of 11, pH 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP is circa 12 h
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
optimum culture conditions
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
optimum culture conditions
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
Polyporous velutinus
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
Polyporous velutinus MTCC 1813
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
3,4-dimethoxybenzaldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2

?
-
-
-
-
?
veratryl alcohol + H2O2
?
-
-
-
-
?
veratryl alcohol + H2O2
?
-
-
-
-
?
veratryl alcohol + H2O2
?
-
-
-
?
veratryl alcohol + H2O2

veratraldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
Pycnoporus sp.
-
-
-
-
?
veratryl alcohol + H2O2
veratraldehyde + H2O
-
-
-
-
?
additional information

?
-
-
the enzyme shows a higher decolorization rate for monoazo dyes than for thiazin and heterocyclic textile dyes. A high decolorization rate is observed for the azo-dye such as Methyl red 98% and Methyl orange 96% within 24 h, while Direct blue GLL, Direct red 5B, Direct brown MR, Reactive red 2, and Ethylene blue decolorize up to 87%, 79%, 75%, 73%, and 84%, within 48 h, respectively. Direct brown T4LL, Disperse red DK, and Congo red show comparatively less decolorization than the others (63.2%, 63.3%, and 67.9%, within 48 h, respectively)
-
-
-
additional information
?
-
-
the enzyme shows a higher decolorization rate for monoazo dyes than for thiazin and heterocyclic textile dyes. A high decolorization rate is observed for the azo-dye such as Methyl red 98% and Methyl orange 96% within 24 h, while Direct blue GLL, Direct red 5B, Direct brown MR, Reactive red 2, and Ethylene blue decolorize up to 87%, 79%, 75%, 73%, and 84%, within 48 h, respectively. Direct brown T4LL, Disperse red DK, and Congo red show comparatively less decolorization than the others (63.2%, 63.3%, and 67.9%, within 48 h, respectively)
-
-
-
additional information
?
-
-
manganese peroxidase activity is more efficient than lignin peroxidase activity, with activity increasing with increasing concentrations of Mn2+ due to a second metal binding site involved in homotropic substrate Mn2+ activation. The activation of maganese peroxidase is also accompanied by a decrease in both activation energy and substrate Mn2+ affinity
-
-
-
additional information
?
-
-
Sulfonated azo dyes such as Methyl orange and Blue-2B are degraded by the purified lignin peroxidase. Degradation of the dyes is confirmed by HPLC, GC-MS, and FTIR spectroscopy. The mainly elected products of Methyl orange are 4-substituted hexanoic acid (m/z = 207), 4-cyclohexenone lactone cation (m/z = 191), and 4-isopropanal-2, 5-cyclohexa-dienone (m/z = 149) and for Blue-2B are 4-(2-hexenoic acid)-2, 5-cyclohexa-diene-one (m/z = 207) and dehydro-acetic acid derivative (m/z = 223), proposed pathway of degradation
-
-
-
additional information
?
-
-
Comamonas sp UVS decolorizes Direct Blue GLL dye (50 mg/l) within 13 h at static condition in yeast extract broth. It can degrade up to 300 mg/l of dye within 55 h. The maximum rate (Vmax) of decolorization is 12.41 mg dye/gcell h with the Michaelis constant (KM) value as 6.20 mg/l. The biodegradation is monitored by UV-Vis, GC-MS and HPLC, no decolorization is found under shaking conditions
-
-
-
additional information
?
-
-
Comamonas sp UVS decolorizes Direct Blue GLL dye (50 mg/l) within 13 h at static condition in yeast extract broth. It can degrade up to 300 mg/l of dye within 55 h. The maximum rate (Vmax) of decolorization is 12.41 mg dye/gcell h with the Michaelis constant (KM) value as 6.20 mg/l. The biodegradation is monitored by UV-Vis, GC-MS and HPLC, no decolorization is found under shaking conditions
-
-
-
additional information
?
-
-
catalyzes non-specifically several oxidations in the alkyl-side-chains of lignin-related compounds, Calpha-Cbeta cleavage in lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
of the aryl-CalphaHOH-CbetaHR-CgammaH2OH-type (R being aryl or O-aryl)
-
-
?
additional information
?
-
-
intradiol cleavage in phenylglycol structures, hydroxylation of benzylic methylene groups, oxidative coupling of phenols, all reactions require H2O2, Calpha-Cbeta cleavage and methylene hydroxylation involve substrate oxygenation, the oxygen atom originates from O2 not H2O2: thus the enzyme acts as oxygenase which requires H2O2
-
-
?
additional information
?
-
-
intradiol cleavage in phenylglycol structures, hydroxylation of benzylic methylene groups, oxidative coupling of phenols, all reactions require H2O2, Calpha-Cbeta cleavage and methylene hydroxylation involve substrate oxygenation, the oxygen atom originates from O2 not H2O2: thus the enzyme acts as oxygenase which requires H2O2
-
-
?
additional information
?
-
-
with concomitant insertion of 1 atom of molecular oxygen
-
-
?
additional information
?
-
-
with concomitant insertion of 1 atom of molecular oxygen
-
-
?
additional information
?
-
-
oxidation of benzyl alcohols to aldehydes or ketones
-
-
?
additional information
?
-
-
oxidation of benzyl alcohols to aldehydes or ketones
-
-
?
additional information
?
-
-
bioelectric oxidation of organic substrates by LiP immobilized on graphite electrodes: the enzyme can establish direct (i.e. mediatorless) electronic contact with graphite electrodes. In the case of the so called direct electron transfer reaction, the oxidized enzyme is directly reduced by the electrode to the initial ferriperoxidase state. In the presence of an electron donor other than electrode, the two-electron reduction of enzyme form E1 (containing an oxyferryl iron and a porphyrin pi cation radical) to the initial ferriperoxidase occurs through the intermediate formation of enzyme form II by a sequential one-electron transfer from the electron donor. The formed oxidized electron donor is then electrochemically reduced by the electrode. Different mechanisms for the bioelectrocatalysis of the enzyme depend on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of the enzyme as solid-phase bio(electro)catalyst for decomposition/detection of of recalcitrant aromatic compounds
-
-
-
additional information
?
-
-
decolourization of two waterless-soluble aromatic dyes (pyrogallol red and bromopyrogallol red) using lignin peroxidase coupled with glucose oxidase in the medium demonstrates that a higher decolourization percentage is obtained if H2O2 is supplied enzymatically
-
-
-
additional information
?
-
lignin peroxidase is not able to oxidize phenolic compounds efficiently because of inactivation in the absence of veratryl alcohol or related substrates
-
-
-
additional information
?
-
-
the removal mechanism of catechol derivatives seems to be different for each catecholic substrate in terms of substrate consumption and transformation, and of enzyme activity
-
-
-
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
-
of the aryl-CalphaHOH-CbetaHR-CgammaH2OH-type (R being aryl or O-aryl)
-
-
?
additional information
?
-
-
intradiol cleavage in phenylglycol structures, hydroxylation of benzylic methylene groups, oxidative coupling of phenols, all reactions require H2O2, Calpha-Cbeta cleavage and methylene hydroxylation involve substrate oxygenation, the oxygen atom originates from O2 not H2O2: thus the enzyme acts as oxygenase which requires H2O2
-
-
?
additional information
?
-
-
with concomitant insertion of 1 atom of molecular oxygen
-
-
?
additional information
?
-
-
oxidation of benzyl alcohols to aldehydes or ketones
-
-
?
additional information
?
-
-
decolourization of two waterless-soluble aromatic dyes (pyrogallol red and bromopyrogallol red) using lignin peroxidase coupled with glucose oxidase in the medium demonstrates that a higher decolourization percentage is obtained if H2O2 is supplied enzymatically
-
-
-
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
first enzyme connected to oxidative breakdown of the aromatic plant heteropolymer lignin and related xenobiotics
-
-
-
additional information
?
-
first enzyme connected to oxidative breakdown of the aromatic plant heteropolymer lignin and related xenobiotics
-
-
-
additional information
?
-
first enzyme connected to oxidative breakdown of the aromatic plant heteropolymer lignin and related xenobiotics
-
-
-
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
additional information
?
-
enzyme DypB has a significant role in lignin degradation in Rhodococcus jostii RHA1, is able to oxidize both polymeric lignin and a lignin model compound, and appears to have both Mn(II) and lignin oxidation sites
-
-
-
additional information
?
-
-
oxidation of various phenolic and non-phenolic lignin model-compounds
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Paszczynski, A.; Huynh, V.B.; Crawford, R.L.
Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium
Arch. Biochem. Biophys.
244
750-765
1986
Phanerochaete chrysosporium, Phanerochaete chrysosporium BKM-F-1767
brenda
Tien, M.; Kirk, T.K.
Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase
Proc. Natl. Acad. Sci. USA
81
2280-2284
1984
Phanerochaete chrysosporium, Phanerochaete chrysosporium BKM-F-1767
brenda
Renganathan, V.; Miki, K.; Gold, M.H.
Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium
Arch. Biochem. Biophys.
241
304-314
1985
Phanerochaete chrysosporium
brenda
Andersson, L.A.; Renganathan, V.; Chiu, A.A.; Loehr, T.M.; Gold, M.H.
Spectral characterization of diarylpropane oxygenase, a novel peroxide-dependent, lignin-degrading heme enzyme
J. Biol. Chem.
260
6080-6087
1985
Phanerochaete chrysosporium
brenda
Gold, M.H.; Kuwahara, M.; Chiu, A.A.; Glenn, J.K.
Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium
Arch. Biochem. Biophys.
234
353-362
1984
Phanerochaete chrysosporium
brenda
Johansson, T.; Welinder, K.G.; Nyman, P.O.
Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions
Arch. Biochem. Biophys.
300
57-62
1993
Trametes versicolor
brenda
Karhunen, E.; Kantelinen, A.; Niku-Paavola, M.L.
Mn-dependent peroxidase from the lignin-degrading white rot fungus Phlebia radiata
Arch. Biochem. Biophys.
279
25-31
1990
Phlebia radiata, Phlebia radiata 79
brenda
Aitken, M.; Irvine, R.L.
Stability testing of ligninase and Mn-peroxidase from Phanerochaete chrysosporium
Biotechnol. Bioeng.
34
1251-1260
1989
Phanerochaete chrysosporium, Phanerochaete chrysosporium VKM F-1767
brenda
Johansson, T.; Nyman, P.O.
Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. I. Isolation of enzyme forms and characterization of physical and catalytic properties
Arch. Biochem. Biophys.
300
49-56
1993
Trametes versicolor
brenda
Mester, T.; Field, J.A.
Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese
J. Biol. Chem.
273
15412-15417
1998
Bjerkandera sp., Bjerkandera sp. BOS55
brenda
Khindaria, A.; Nie, G.; Aust, S.D.
Detection and characterization of the lignin peroxidase compound II-veratryl alcohol cation radical complex
Biochemistry
36
14181-14185
1997
Phanerochaete chrysosporium
brenda
ten Have, R.; Hartmans, S.; Teunissen, P.J.; Field, J.A.
Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55
FEBS Lett.
422
391-394
1998
Bjerkandera sp., Bjerkandera sp. BOS55
brenda
Blodig, W.; Smith, A.T.; Doyle, W.A.; Piontek, K.
Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism
J. Mol. Biol.
305
851-861
2001
Phanerochaete chrysosporium
brenda
Mester, T.; Tien, M.
Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium
Biochem. Biophys. Res. Commun.
284
723-728
2001
Phanerochaete chrysosporium
brenda
Liu, A.; Huang, X.; Song, S.; Wang, D.; Lu, X.; Qu, Y.; Gao, P.
Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique
Spectrochim. Acta A
59
2547-2551
2003
Phanerochaete chrysosporium
brenda
Zhang, W.; Huang, X.; Li, Y.; Qu, Y.; Gao, P.
Catalytic activity of lignin peroxidase and partition of veratryl alcohol in AOT/isooctane/toluene/water reverse micelles
Appl. Microbiol. Biotechnol.
70
315-320
2006
Phanerochaete chrysosporium
brenda
Ferapontova, E.E.; Castillo, J.; Gorton, L.
Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds
Biochim. Biophys. Acta
1760
1343-1354
2006
Phanerochaete chrysosporium
brenda
Hilden, K.S.; Maekelae, M.R.; Hakala, T.K.; Hatakka, A.; Lundell, T.
Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata
Curr. Genet.
49
97-105
2006
Phlebia radiata, Phlebia radiata (Q3L2T9), Phlebia radiata (Q3L452), Phlebia radiata (Q53WT9)
brenda
Lan, J.; Huang, X.; Hu, M.; Li, Y.; Qu, Y.; Gao, P.; Wu, D.
High efficient degradation of dyes with lignin peroxidase coupled with glucose oxidase
J. Biotechnol.
123
483-490
2006
Phanerochaete chrysosporium
brenda
Pointing, S.B.; Pelling, A.L.; Smith, G.J.; Hyde, K.D.; Reddy, C.A.
Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences
Mycol. Res.
109
115-124
2005
Panus sp., Perenniporia medulla-panis, Phanerochaete chrysosporium (P06181), Phanerochaete chrysosporium (P11543), Phanerochaete chrysosporium (Q9UW80), Phanerochaete chrysosporium H10 (P11543), Phanerochaete chrysosporium H2 (Q9UW80), Phanerochaete chrysosporium H8 (P06181), Pycnoporus coccineus, Trametes sanguinea, Trametes versicolor
brenda
Gottschalk, L.M.; Bon, E.P.; Nobrega, R.
Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration Using ultrafiltration
Appl. Biochem. Biotechnol.
147
23-32
2008
Streptomyces viridosporus, Streptomyces viridosporus T7A
brenda
Ghodake, G.S.; Kalme, S.D.; Jadhav, J.P.; Govindwar, S.P.
Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes
Appl. Biochem. Biotechnol.
152
6-14
2008
Acinetobacter calcoaceticus, Acinetobacter calcoaceticus NCIM 2890
brenda
Zhang, Y.; Huang, X.R.; Huang, F.; Li, Y.Z.; Qu, Y.B.; Gao, P.J.
Catalytic performance of lignin peroxidase in a novel reverse micelle
Colloids Surf. B Biointerfaces
65
50-53
2008
Phanerochaete chrysosporium
brenda
Ryu, K.; Hwang, S.Y.; Kim, K.H.; Kang, J.H.; Lee, E.K.
Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability
J. Biotechnol.
133
110-115
2008
Phanerochaete chrysosporium
brenda
Ryu, K.; Kang, J.H.; Wang, L.; Lee, E.K.
Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling
J. Biotechnol.
135
241-246
2008
Phanerochaete chrysosporium
brenda
Alam, M.Z.; Mansor, M.F.; Jalal, K.C.
Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium
J. Hazard. Mater.
162
708-715
2009
Phanerochaete chrysosporium
brenda
Miki, Y.; Morales, M.; Ruiz-Duenas, F.J.; Martinez, M.J.; Wariishi, H.; Martinez, A.T.
Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue
Protein Expr. Purif.
68
208-214
2009
Trametopsis cervina (Q60FD2), Trametopsis cervina
brenda
Kalmi?, E.; Ya?a, I.; Kalyoncu, F.; Pazarba?i, B.; Koçyi?it, A.
Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms
Afr. J. Biotechnol.
7
4314-4320
2008
Lentinus sajor-caju, Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus
-
brenda
Cohen, S.; Belinky, P.A.; Hadar, Y.; Dosoretz, C.G.
Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture
Biores. Technol.
100
2247-2253
2009
Phanerochaete chrysosporium
brenda
Qiu, H.; Li, Y.; Ji, G.; Zhou, G.; Huang, X.; Qu, Y.; Gao, P.
Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase
Biores. Technol.
100
3837-3842
2009
Phanerochaete chrysosporium
brenda
Sugiura, T.; Yamagishi, K.; Kimura, T.; Nishida, T.; Kawagishi, H.; Hirai, H.
Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624
Biosci. Biotechnol. Biochem.
73
1793-1798
2009
Phanerochaete sordida (B6ZKF4), Phanerochaete sordida
brenda
Sharma, J.; Yadav, R.; Singh, N.; Yadav, K.
Secretion and characterisation of ligninperoxidases by some new indigenous lignolytic fungi
Biosci. Biotechnol. Res. Asia
5
673-678
2008
Agaricus campestris, Agaricus campestris MTCC, Inonotus linteus, Inonotus linteus MTCC 1175, Lentinus sajor-caju, Lentinus sajor-caju MTCC 141, Phanerochaete chrysosporium, Phanerochaete chrysosporium MTCC 787, Pleurotus ostreatus, Pleurotus ostreatus MTCC 1803, Pleurotus sapidus, Pleurotus sapidus MTCC, Polyporous velutinus, Polyporous velutinus MTCC 1813, Trametes elegans, Trametes elegans MTCC 1812, Trametes hirsuta, Trametes hirsuta MTCC 136, Trametes versicolor, Trametes versicolor MTCC 138, Volvariella volvacea, Volvariella volvacea MTCC 957
-
brenda
Gomare, S.; Jadhav, J.; Govindwar, S.
Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298
Biotechnol. Bioprocess Eng.
13
136-143
2008
Brevibacillus laterosporus
-
brenda
Gomes, E.; Aguiar, A.; Carvalho, C.; Bonfá, M.; Da Silva, R.; Boscolo, M.
Ligninases production by basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes
Braz. J. Microbiol.
40
31-39
2009
Coriolopsis byrsina, Coriolopsis byrsina SXS 16, Lentinus sp., Lentinus sp. SXS48, Lentinus strigellus, Lentinus strigellus SXS355, Phellinus rimosus, Phellinus rimosus SXS 47, Trametes sanguinea, Trametes sanguinea SXS 43
brenda
Yadav, M.; Yadav, P.; Yadav, K.
Purification and characterization of lignin peroxidase from Loweporus lividus MTCC-1178
Eng. Life Sci.
9
124-129
2009
Loweporus lividus
-
brenda
Lan, J.; Zhang, Y.; Huang, X.; Hu, M.; Liu, W.; Li, Y.; Qu, Y.; Gao, P.
Improvement of the catalytic performance of lignin peroxidase in reversed micelles
J. Chem. Technol. Biotechnol.
83
64-70
2008
Phanerochaete chrysosporium, Phanerochaete chrysosporium F. F. Lombard ME446
-
brenda
Jadhav, U.; Dawkar, V.; Telke, A.; Govindwar, S.
Decolorization of direct blue GLL with enhanced lignin peroxidase enzyme production in Comamonas sp UVS
J. Chem. Technol. Biotechnol.
84
126-132
2009
Comamonas sp., Comamonas sp. UVS
-
brenda
Ruiz-Duenas, F.J.; Morales, M.; Garcia, E.; Miki, Y.; Martinez, M.J.; Martinez, A.T.
Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases
J. Exp. Bot.
60
441-452
2009
Phanerochaete chrysosporium (P49012)
brenda
Alam, M.Z.; Mansor, M.F.; Jalal, K.C.
Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor
J. Ind. Microbiol. Biotechnol.
36
757-764
2009
Phanerochaete chrysosporium
brenda
Yadav, M.; Singh, S.; Yadav, K.
Purification and characterization of Lignin peroxidase from Pleurotus sajor caju MTCC-141
J. Wood Chem. Technol.
29
59-73
2009
Lentinus sajor-caju, Lentinus sajor-caju MTCC-141
brenda
Nascimento, H.; Silva Jr., J.
Purification of lignin peroxidase isoforms from Streptomyces viridosporus T7A by hydrophobic based chromatographies
World J. Microbiol. Biotechnol.
24
1973-1975
2008
Streptomyces viridosporus, Streptomyces viridosporus T7A
brenda
Wang, P.; Hu, X.; Cook, S.; Begonia, M.; Lee, K.; Hwang, H.
Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase
World J. Microbiol. Biotechnol.
24
2205-2212
2008
Phanerochaete chrysosporium, Phanerochaete chrysosporium ATCC 20696
-
brenda
Lee, K.; Pi, K.; Lee, K.
Synthesis of veratraldehyde from veratryl alcohol by lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electrochemical reactor
World J. Microbiol. Biotechnol.
25
1691-1694
2009
Phanerochaete chrysosporium, Phanerochaete chrysosporium ATCC 24725
brenda
Yadav, M.; Yadav, P.; Yadav, K.D.
Purification, characterization, and coal depolymerizing activity of lignin peroxidase from Gloeophyllum sepiarium MTCC-1170
Biochemistry
74
1125-1131
2009
Gloeophyllum sepiarium, Gloeophyllum sepiarium MTCC-1170
brenda
Brueck, T.B.; Brueck, D.W.
Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase
Biochimie
93
217-226
2011
Phanerochaete chrysosporium
brenda
Jing, D.
Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization
Biores. Technol.
101
7592-7597
2010
Streptomyces lavendulae
brenda
Zanirun, Z.; Abd-Aziz, S.; Ling, F.; Hassan, M.
Optimisation of lignin peroxidase production using locally isolated Pycnoporus sp. through factorial design
Biotechnology
8
296-305
2009
Pycnoporus sp.
-
brenda
Wen, X.; Jia, Y.; Li, J.
Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium--a white rot fungus
Chemosphere
75
1003-1007
2009
Phanerochaete chrysosporium, Phanerochaete chrysosporium BKM-F-1767
brenda
Miki, Y.; Ichinose, H.; Wariishi, H.
Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina: a novel fungal peroxidase
FEMS Microbiol. Lett.
304
39-46
2010
Trametopsis cervina (Q60FD2), Trametopsis cervina, Trametopsis cervina WD550 (Q60FD2)
brenda
Taboada-Puig, R.; Lu-Chau, T.A.; Moreira, M.T.; Feijoo, G.; Lema, J.M.
Activation of Kraft lignin by an enzymatic treatment with a versatile peroxidase from Bjerkandera sp. R1
Appl. Biochem. Biotechnol.
169
1262-1278
2013
Bjerkandera sp., Bjerkandera sp. R1
brenda
Sharma, J.; Yadav, M.; Singh, N.; Yadav, K.
Purification and characterisation of lignin peroxidase from Pycnoporus sanguineus MTCC-137
Appl. Biochem. Microbiol.
47
532-537
2011
Trametes sanguinea, Trametes sanguinea MTCC-137
-
brenda
Yadav, M.; Singh, S.; Yadava, S.
Purification, characterisation and coal depolymerisation activity of lignin peroxidase from Lenzitus betulina MTCC-1183
Appl. Biochem. Microbiol.
48
583-589
2012
Lenzites betulinus, Lenzites betulinus MTCC-1183
brenda
Ahmad, M.; Roberts, J.N.; Hardiman, E.M.; Singh, R.; Eltis, L.D.; Bugg, T.D.
Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase
Biochemistry
50
5096-5107
2011
Rhodococcus jostii (Q0SE24), Rhodococcus jostii
brenda
Ertan, H.; Siddiqui, K.S.; Muenchhoff, J.; Charlton, T.; Cavicchioli, R.
Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: Insight into manganese peroxidase activation and lignin peroxidase inhibition
Biochimie
94
1221-1231
2012
Bjerkandera adusta
brenda
Asgher, M.; Iqbal, H.M.; Irshad, M.
Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs
BMC Biotechnol.
12
46
2012
Trametes versicolor, Trametes versicolor IBL-04
brenda